scispace - formally typeset

Carbon steel

About: Carbon steel is a(n) research topic. Over the lifetime, 22395 publication(s) have been published within this topic receiving 233330 citation(s). The topic is also known as: high-carbon steel. more

More filters

Journal ArticleDOI
01 Apr 1999-Corrosion Science
Abstract: A new corrosion inhibitor, namely, 3,5-bis (2-thienyl)-4-amino-1,2,4-triazoles (2-TAT) has been synthesised and its inhibiting action on the corrosion of mild steel in acid baths (1 M HCl and 0.5 M H2SO4) has been investigated by various corrosion monitoring techniques, such as corrosion weight loss tests and electrochemical impedance spectroscopy. The electrochemical study reveals that this compound is an anodic inhibitor. Changes in impedance parameters (Rt and Cdl) are indicative of the adsorption of 2-TAT on the metal surface, leading to the formation of a protective film which grows with increasing exposure time. 2-TAT is able to reduce the steel corrosion more effectively in 1 M HCl than in 0.5 M H2SO4. The adsorption of this inhibitor is also found to obey the Langmuir adsorption isotherm in both acids. 2-TAT is considered as a non-cytotoxic substance. more

509 citations

Journal ArticleDOI
F.S. de Souza1, Almir Spinelli1Institutions (1)
01 Mar 2009-Corrosion Science
Abstract: The inhibitor effect of the naturally occurring biological molecule caffeic acid on the corrosion of mild steel in 0.1 M H2SO4 was investigated by weight loss, potentiodynamic polarization, electrochemical impedance and Raman spectroscopy. The different techniques confirmed the adsorption of caffeic acid onto the mild steel surface and consequently the inhibition of the corrosion process. Caffeic acid acts by decreasing the available cathodic reaction area and modifying the activation energy of the anodic reaction. A mechanism is proposed to explain the inhibitory action of the corrosion inhibitor. more

445 citations

Journal ArticleDOI
Shigeaki Kobayashi1, Takao Yakou1Institutions (1)
Abstract: The toughening of Fe–Al intermetallic compound coating formed by aluminizing of carbon steel was investigated. The growth mechanism, morphology and mechanical properties of Fe–Al intermetallic compound layers on the surface of carbon steel were systematically evaluated for specimens diffused at temperatures ranging from 873 to 1323 K after hot dip aluminizing. Fe2Al5 was mainly formed on the specimen surfaces at the usual diffusion temperatures from 873 to 923 K. However, FeAl and Fe3Al layers having relatively high fracture resistance and oxidation resistance properties were preferentially formed in the specimens diffused at temperatures greater than 1273 K. The activation energies required for the growth of the FeAl and Fe3Al layers were QFeAl=180 and QFe3Al=260 kJ mol−1, respectively. It was identified that the formation and growth of Fe–Al intermetallic compound layers is controlled by the diffusion of Fe atoms into the intermetallic compound layers. more

441 citations

Journal ArticleDOI
Srdjan Nesic1, J. Postlethwaite2, Stein Olsen3Institutions (3)
01 Apr 1996-Corrosion
Abstract: A predictive model was developed for uniform carbon dioxide (CO2) corrosion, based on modeling of individual electrochemical reactions in a water-CO2 system. The model takes into account the electrochemical reactions of hydrogen ion (H+) reduction, carbonic acid (H2CO3) reduction, direct water reduction, oxygen reduction, and anodic dissolution of iron. The required electrochemical parameters (e.g., exchange current densities and Tafel slopes) for different reactions were determined from experiments conducted in glass cells. The corrosion process was monitored using polarization resistance, potentiodynamic sweep, electrochemical impedance, and weight-loss measurements. The model was calibrated for two mild steels over a range of parameters: temperature (t) = 20°C to 80°C, pH = 3 to 6, partial pressure of CO2 (PCO2) = 0 bar to 1 bar (0 kPa to 100 kPa), and ω = 0 rpm to 5,000 rpm (vp = 0 m/s to 2.5 m/s). The model was applicable for uniform corrosion with no protective films present. Performance of... more

425 citations

Journal ArticleDOI
R. Y. Chen1, W.Y.D. YeunInstitutions (1)
Abstract: This paper reviews previous studies on iron and steel oxidation in oxygen or air at high temperatures. Oxidation of iron at temperatures above 700°C follows the parabolic law with the development of a three-layered hematite/magnetite/wustite scale structure. However, at temperatures below 700°C, inconsistent results have been reported, and the scale structures are less regular, significantly affected by sample-preparation methods. Oxidation of carbon steel is generally slower than iron oxidation. For very short-time oxidation, the scale structures are similar to those formed on iron, but for longer-time oxidation, because of the less adherent nature, the scale structures developed are typically much more complex. Continuous-cooling conditions, after very short-time oxidation, favor the retention of an adherent scale, suggesting that the method proposed by Kofstad for deriving the rate constant using continuous cooling or heating-oxidation data is more appropriate for steel oxidation. Oxygen availability has certain effects on iron and steel oxidation. Under continuous cooling conditions, the final scale structure is found to be a function of the starting temperature for cooling and the cooling rate. Different scale structures develop across the width of a hot-rolled strip because of the varied oxygen availability and cooling rates at different locations. more

422 citations

Network Information
Related Topics (5)
Aluminium alloy

15.9K papers, 207K citations

93% related

36.6K papers, 514.8K citations

92% related

152.8K papers, 1.9M citations

92% related
Austenitic stainless steel

16.6K papers, 228.5K citations

92% related
Intergranular corrosion

12.1K papers, 193.2K citations

92% related
No. of papers in the topic in previous years

Top Attributes

Show by:

Topic's top 5 most impactful authors

Srdjan Nesic

50 papers, 2.2K citations

Abdelkader Zarrouk

41 papers, 1K citations

Belkheir Hammouti

40 papers, 982 citations

Fouad Bentiss

34 papers, 3.4K citations

Anne Neville

29 papers, 606 citations