scispace - formally typeset
Topic

Carcinogenesis

About: Carcinogenesis is a(n) research topic. Over the lifetime, 60368 publication(s) have been published within this topic receiving 3192599 citation(s). The topic is also known as: oncogenesis & tumorigenesis.


Papers
More filters
Journal ArticleDOI
05 Jul 1991-Science
TL;DR: The p53 mutational spectrum differs among cancers of the colon, lung, esophagus, breast, liver, brain, reticuloendothelial tissues, and hemopoietic tissues as mentioned in this paper.
Abstract: Mutations in the evolutionarily conserved codons of the p53 tumor suppressor gene are common in diverse types of human cancer. The p53 mutational spectrum differs among cancers of the colon, lung, esophagus, breast, liver, brain, reticuloendothelial tissues, and hemopoietic tissues. Analysis of these mutations can provide clues to the etiology of these diverse tumors and to the function of specific regions of p53. Transitions predominate in colon, brain, and lymphoid malignancies, whereas G:C to T:A transversions are the most frequent substitutions observed in cancers of the lung and liver. Mutations at A:T base pairs are seen more frequently in esophageal carcinomas than in other solid tumors. Most transitions in colorectal carcinomas, brain tumors, leukemias, and lymphomas are at CpG dinucleotide mutational hot spots. G to T transversions in lung, breast, and esophageal carcinomas are dispersed among numerous codons. In liver tumors in persons from geographic areas in which both aflatoxin B1 and hepatitis B virus are cancer risk factors, most mutations are at one nucleotide pair of codon 249. These differences may reflect the etiological contributions of both exogenous and endogenous factors to human carcinogenesis.

7,906 citations

Journal Article
TL;DR: The causes of the widespread differential expression of miRNA genes in malignant compared with normal cells can be explained by the location of these genes in cancer-associated genomic regions, by epigenetic mechanisms and by alterations in the miRNA processing machinery as discussed by the authors.
Abstract: MicroRNA (miRNA) alterations are involved in the initiation and progression of human cancer. The causes of the widespread differential expression of miRNA genes in malignant compared with normal cells can be explained by the location of these genes in cancer-associated genomic regions, by epigenetic mechanisms and by alterations in the miRNA processing machinery. MiRNA-expression profiling of human tumours has identified signatures associated with diagnosis, staging, progression, prognosis and response to treatment. In addition, profiling has been exploited to identify miRNA genes that might represent downstream targets of activated oncogenic pathways, or that target protein- coding genes involved in cancer.

6,306 citations

Journal ArticleDOI
29 Mar 2013-Science
TL;DR: This work has revealed the genomic landscapes of common forms of human cancer, which consists of a small number of “mountains” (genes altered in a high percentage of tumors) and a much larger number of "hills" (Genes altered infrequently).
Abstract: Over the past decade, comprehensive sequencing efforts have revealed the genomic landscapes of common forms of human cancer. For most cancer types, this landscape consists of a small number of “mountains” (genes altered in a high percentage of tumors) and a much larger number of “hills” (genes altered infrequently). To date, these studies have revealed ~140 genes that, when altered by intragenic mutations, can promote or “drive” tumorigenesis. A typical tumor contains two to eight of these “driver gene” mutations; the remaining mutations are passengers that confer no selective growth advantage. Driver genes can be classified into 12 signaling pathways that regulate three core cellular processes: cell fate, cell survival, and genome maintenance. A better understanding of these pathways is one of the most pressing needs in basic cancer research. Even now, however, our knowledge of cancer genomes is sufficient to guide the development of more effective approaches for reducing cancer morbidity and mortality.

5,607 citations

Journal ArticleDOI
TL;DR: The results indicate that miRNAs are extensively involved in cancer pathogenesis of solid tumors and support their function as either dominant or recessive cancer genes.
Abstract: Small noncoding microRNAs (miRNAs) can contribute to cancer development and progression and are differentially expressed in normal tissues and cancers From a large-scale miRnome analysis on 540 samples including lung, breast, stomach, prostate, colon, and pancreatic tumors, we identified a solid cancer miRNA signature composed by a large portion of overexpressed miRNAs Among these miRNAs are some with well characterized cancer association, such as miR-17-5p, miR-20a, miR-21, miR-92, miR-106a, and miR-155 The predicted targets for the differentially expressed miRNAs are significantly enriched for protein-coding tumor suppressors and oncogenes (P < 00001) A number of the predicted targets, including the tumor suppressors RB1 (Retinoblastoma 1) and TGFBR2 (transforming growth factor, beta receptor II) genes were confirmed experimentally Our results indicate that miRNAs are extensively involved in cancer pathogenesis of solid tumors and support their function as either dominant or recessive cancer genes

5,538 citations

Journal ArticleDOI
19 Mar 1992-Nature
TL;DR: Observations indicate that a normal p53 gene is dispensable for embryonic development, that its absence predisposes the animal to neoplastic disease, and that an oncogenic mutant form of p53 is not obligatory for the genesis of many types of tumours.
Abstract: Mutations in the p53 tumour-suppressor gene are the most frequently observed genetic lesions in human cancers. To investigate the role of the p53 gene in mammalian development and tumorigenesis, a null mutation was introduced into the gene by homologous recombination in murine embryonic stem cells. Mice homozygous for the null allele appear normal but are prone to the spontaneous development of a variety of neoplasms by 6 months of age. These observations indicate that a normal p53 gene is dispensable for embryonic development, that its absence predisposes the animal to neoplastic disease, and that an oncogenic mutant form of p53 is not obligatory for the genesis of many types of tumours.

4,595 citations


Network Information
Related Topics (5)
Cell growth
104.2K papers, 3.7M citations
94% related
Cancer
339.6K papers, 10.9M citations
93% related
Apoptosis
115.4K papers, 4.8M citations
92% related
Cell culture
133.3K papers, 5.3M citations
91% related
Programmed cell death
60.5K papers, 3.8M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202231
20213,475
20203,469
20193,432
20183,073
20173,598