scispace - formally typeset
Search or ask a question

Showing papers on "Carcinogenesis published in 2016"


Journal ArticleDOI
TL;DR: Current understanding is discussed as to the nature of differences in the function and fate of MDSC in the tumor and peripheral lymphoid organs, the underlying mechanisms, and their potential impact on the regulation of tumor progression.

1,339 citations


Journal ArticleDOI
25 Jan 2016
TL;DR: In it, detailed insight is provided into the essential roles exerted by specific lipids in mediating intracellular oncogenic signaling, endoplasmic reticulum stress and bidirectional crosstalk between cells of the tumor microenvironment and cancer cells.
Abstract: Many human diseases, including metabolic, immune and central nervous system disorders, as well as cancer, are the consequence of an alteration in lipid metabolic enzymes and their pathways. This illustrates the fundamental role played by lipids in maintaining membrane homeostasis and normal function in healthy cells. We reviewed the major lipid dysfunctions occurring during tumor development, as determined using systems biology approaches. In it, we provide detailed insight into the essential roles exerted by specific lipids in mediating intracellular oncogenic signaling, endoplasmic reticulum stress and bidirectional crosstalk between cells of the tumor microenvironment and cancer cells. Finally, we summarize the advances in ongoing research aimed at exploiting the dependency of cancer cells on lipids to abolish tumor progression.

956 citations


Journal ArticleDOI
08 Apr 2016-Science
TL;DR: MYC regulates the expression of two immune checkpoint proteins on the tumor cell surface: the innate immune regulator CD47 (cluster of differentiation 47) and the adaptive immune checkpoint PD-L1 (programmed death–ligand 1).
Abstract: The MYC oncogene codes for a transcription factor that is overexpressed in many human cancers. Here we show that MYC regulates the expression of two immune checkpoint proteins on the tumor cell surface: the innate immune regulator CD47 (cluster of differentiation 47) and the adaptive immune checkpoint PD-L1 (programmed death-ligand 1). Suppression of MYC in mouse tumors and human tumor cells caused a reduction in the levels of CD47 and PD-L1 messenger RNA and protein. MYC was found to bind directly to the promoters of the Cd47 and Pd-l1 genes. MYC inactivation in mouse tumors down-regulated CD47 and PD-L1 expression and enhanced the antitumor immune response. In contrast, when MYC was inactivated in tumors with enforced expression of CD47 or PD-L1, the immune response was suppressed, and tumors continued to grow. Thus, MYC appears to initiate and maintain tumorigenesis, in part, through the modulation of immune regulatory molecules.

924 citations


Journal ArticleDOI
TL;DR: This Review described key decision-making nodes in the complex interplay between cell survival and death following DNA damage, which determine the outcome of cancer therapy with genotoxic drugs.
Abstract: DNA is vulnerable to damage resulting from endogenous metabolites, environmental and dietary carcinogens, some anti-inflammatory drugs, and genotoxic cancer therapeutics. Cells respond to DNA damage by activating complex signalling networks that decide cell fate, promoting not only DNA repair and survival but also cell death. The decision between cell survival and death following DNA damage rests on factors that are involved in DNA damage recognition, and DNA repair and damage tolerance, as well as on factors involved in the activation of apoptosis, necrosis, autophagy and senescence. The pathways that dictate cell fate are entwined and have key roles in cancer initiation and progression. Furthermore, they determine the outcome of cancer therapy with genotoxic drugs. Understanding the molecular basis of these pathways is important not only for gaining insight into carcinogenesis, but also in promoting successful cancer therapy. In this Review, we describe key decision-making nodes in the complex interplay between cell survival and death following DNA damage.

817 citations


Journal ArticleDOI
13 Oct 2016-Nature
TL;DR: This work determines genome-wide mutation patterns in ASCs of the small intestine, colon and liver of human donors with ages ranging from 3 to 87 years by sequencing clonal organoid cultures derived from primary multipotent cells.
Abstract: The gradual accumulation of genetic mutations in human adult stem cells (ASCs) during life is associated with various age-related diseases, including cancer. Extreme variation in cancer risk across tissues was recently proposed to depend on the lifetime number of ASC divisions, owing to unavoidable random mutations that arise during DNA replication. However, the rates and patterns of mutations in normal ASCs remain unknown. Here we determine genome-wide mutation patterns in ASCs of the small intestine, colon and liver of human donors with ages ranging from 3 to 87 years by sequencing clonal organoid cultures derived from primary multipotent cells. Our results show that mutations accumulate steadily over time in all of the assessed tissue types, at a rate of approximately 40 novel mutations per year, despite the large variation in cancer incidence among these tissues. Liver ASCs, however, have different mutation spectra compared to those of the colon and small intestine. Mutational signature analysis reveals that this difference can be attributed to spontaneous deamination of methylated cytosine residues in the colon and small intestine, probably reflecting their high ASC division rate. In liver, a signature with an as-yet-unknown underlying mechanism is predominant. Mutation spectra of driver genes in cancer show high similarity to the tissue-specific ASC mutation spectra, suggesting that intrinsic mutational processes in ASCs can initiate tumorigenesis. Notably, the inter-individual variation in mutation rate and spectra are low, suggesting tissue-specific activity of common mutational processes throughout life.

700 citations


Journal ArticleDOI
TL;DR: Mitochondria play a central and multifunctional role in malignant tumor progression, and targeting mitochondria provides therapeutic opportunities.

697 citations


Journal ArticleDOI
TL;DR: The mechanisms behind microbial metabolite effects, which could be modified by diet to achieve the objective of preventing colorectal cancer in Western societies are discussed.
Abstract: Colorectal cancer is one of the so-called westernized diseases and the second leading cause of cancer death worldwide. On the basis of global epidemiological and scientific studies, evidence suggests that the risk of colorectal cancer is increased by processed and unprocessed meat consumption but suppressed by fibre, and that food composition affects colonic health and cancer risk via its effects on colonic microbial metabolism. The gut microbiota can ferment complex dietary residues that are resistant to digestion by enteric enzymes. This process provides energy for the microbiota but culminates in the release of short-chain fatty acids including butyrate, which are utilized for the metabolic needs of the colon and the body. Butyrate has a remarkable array of colonic health-promoting and antineoplastic properties: it is the preferred energy source for colonocytes, it maintains mucosal integrity and it suppresses inflammation and carcinogenesis through effects on immunity, gene expression and epigenetic modulation. Protein residues and fat-stimulated bile acids are also metabolized by the microbiota to inflammatory and/or carcinogenic metabolites, which increase the risk of neoplastic progression. This Review will discuss the mechanisms behind these microbial metabolite effects, which could be modified by diet to achieve the objective of preventing colorectal cancer in Western societies.

672 citations


Journal ArticleDOI
TL;DR: This work suggests a framework for cancer epigenetics involving three types of genes: 'epigenetic mediators', corresponding to the tumour progenitor genes suggested earlier; 'Epigenetic modifiers' of the mediators, which are frequently mutated in cancer; and 'epigetic modulators' upstream of the modifiers, which is responsive to changes in the cellular environment and often linked to the nuclear architecture.
Abstract: This year is the tenth anniversary of the publication in this journal of a model suggesting the existence of 'tumour progenitor genes'. These genes are epigenetically disrupted at the earliest stages of malignancies, even before mutations, and thus cause altered differentiation throughout tumour evolution. The past decade of discovery in cancer epigenetics has revealed a number of similarities between cancer genes and stem cell reprogramming genes, widespread mutations in epigenetic regulators, and the part played by chromatin structure in cellular plasticity in both development and cancer. In the light of these discoveries, we suggest here a framework for cancer epigenetics involving three types of genes: 'epigenetic mediators', corresponding to the tumour progenitor genes suggested earlier; 'epigenetic modifiers' of the mediators, which are frequently mutated in cancer; and 'epigenetic modulators' upstream of the modifiers, which are responsive to changes in the cellular environment and often linked to the nuclear architecture. We suggest that this classification is helpful in framing new diagnostic and therapeutic approaches to cancer.

666 citations


Journal ArticleDOI
TL;DR: Interleukin-6 (IL-6), one of the major cytokines in the tumour microenvironment, is an important factor which is found at high concentrations and known to be deregulated in cancer.
Abstract: In the last several decades, the number of people dying from cancer-related deaths has not reduced significantly despite phenomenal advances in the technologies related to diagnosis and therapeutic modalities The principal cause behind limitations in the curability of this disease is the reducing sensitivity of the cancer cells towards conventional anticancer therapeutic modalities, particularly in advance stages of the disease Amongst several reasons, certain secretory factors released by the tumour cells into the microenvironment have been found to confer resistance towards chemo- and radiotherapy, besides promoting growth Interleukin-6 (IL-6), one of the major cytokines in the tumour microenvironment, is an important factor which is found at high concentrations and known to be deregulated in cancer Its overexpression has been reported in almost all types of tumours The strong association between inflammation and cancer is reflected by the high IL-6 levels in the tumour microenvironment, where it promotes tumorigenesis by regulating all hallmarks of cancer and multiple signalling pathways, including apoptosis, survival, proliferation, angiogenesis, invasiveness and metastasis, and, most importantly, the metabolism Moreover, IL-6 protects the cancer cells from therapy-induced DNA damage, oxidative stress and apoptosis by facilitating the repair and induction of countersignalling (antioxidant and anti-apoptotic/pro-survival) pathways Therefore, blocking IL-6 or inhibiting its associated signalling independently or in combination with conventional anticancer therapies could be a potential therapeutic strategy for the treatment of cancers with IL-6-dominated signalling

645 citations



Journal ArticleDOI
TL;DR: This review takes a wide view of this problem by analyzing the strategies involved in setting up normal DNA methylation patterns and understanding how this stable epigenetic mark works to prevent gene activation during development.
Abstract: DNA methylation is known to be abnormal in all forms of cancer, but it is not really understood how this occurs and what is its role in tumorigenesis. In this review, we take a wide view of this problem by analyzing the strategies involved in setting up normal DNA methylation patterns and understanding how this stable epigenetic mark works to prevent gene activation during development. Aberrant DNA methylation in cancer can be generated either prior to or following cell transformation through mutations. Increasing evidence suggests, however, that most methylation changes are generated in a programmed manner and occur in a subpopulation of tissue cells during normal aging, probably predisposing them for tumorigenesis. It is likely that this methylation contributes to the tumor state by inhibiting the plasticity of cell differentiation processes. Cancer Res; 76(12); 3446-50. ©2016 AACR.

Journal ArticleDOI
TL;DR: Several drugs targeting PI3K/ATK are currently in clinical trials, alone or in combination, in both solid tumors and hematologic malignancies, and these drugs are the focus of this review.
Abstract: Anticancer targeted therapies are designed to exploit a particular vulnerability in the tumor, which in most cases results from its dependence on an oncogene and/or loss of a tumor suppressor. Genes in the phosphoinositide 3-kinase (PI3K)/AKT pathway are the most frequently altered in human cancers. Aberrant activation of this pathway, as a result of these somatic alterations, is associated with cellular transformation, tumorigenesis, cancer progression, and drug resistance. Several drugs targeting PI3K/ATK are currently in clinical trials, alone or in combination, in both solid tumors and hematologic malignancies. These drugs are the focus of this review.

Journal ArticleDOI
TL;DR: This review directly examines inconsistencies in the literature as to whether various miRNAs are oncogenic or tumor suppressive, and proposes several mechanisms to explain them.
Abstract: MicroRNAs (miRNA) are short, noncoding RNAs whose dysregulation has been implicated in most, if not all, cancers. They regulate gene expression by suppressing mRNA translation and reducing mRNA stability. To this end, there is a great deal of interest in modifying miRNA expression levels for the treatment of cancer. However, the literature is fraught with inconsistent accounts as to whether various miRNAs are oncogenic or tumor suppressive. In this review, we directly examine these inconsistencies and propose several mechanisms to explain them. These mechanisms include the possibility that specific miRNAs can simultaneously produce competing oncogenic and tumor suppressive effects by suppressing both tumor suppressive mRNAs and oncogenic mRNAs, respectively. In addition, miRNAs can modulate tumor-modifying extrinsic factors, such as cancer-immune system interactions, stromal cell interactions, oncoviruses, and sensitivity to therapy. Ultimately, it is the balance between these processes that determines whether a specific miRNA produces a net oncogenic or net tumor suppressive effect. A solid understanding of this phenomenon will likely prove valuable in evaluating miRNA targets for cancer therapy. Cancer Res; 76(13); 3666-70. ©2016 AACR.

Journal ArticleDOI
01 Sep 2016-Nature
TL;DR: Tumour hypoxia acts as a novel regulator of DNA methylation in tumour suppressor genes by reducing the activity of oxygen-dependent ten-eleven translocation enzymes in human and mouse cells.
Abstract: Hypermethylation of the promoters of tumour suppressor genes represses transcription of these genes, conferring growth advantages to cancer cells. How these changes arise is poorly understood. Here we show that the activity of oxygen-dependent ten-eleven translocation (TET) enzymes is reduced by tumour hypoxia in human and mouse cells. TET enzymes catalyse DNA demethylation through 5-methylcytosine oxidation. This reduction in activity occurs independently of hypoxia-associated alterations in TET expression, proliferation, metabolism, hypoxia-inducible factor activity or reactive oxygen species, and depends directly on oxygen shortage. Hypoxia-induced loss of TET activity increases hypermethylation at gene promoters in vitro. In patients, tumour suppressor gene promoters are markedly more methylated in hypoxic tumour tissue, independent of proliferation, stromal cell infiltration and tumour characteristics. Our data suggest that up to half of hypermethylation events are due to hypoxia, with these events conferring a selective advantage. Accordingly, increased hypoxia in mouse breast tumours increases hypermethylation, while restoration of tumour oxygenation abrogates this effect. Tumour hypoxia therefore acts as a novel regulator of DNA methylation.

Journal ArticleDOI
16 Aug 2016-Immunity
TL;DR: A tamoxifen-inducible liver cancer mouse model with a defined oncogenic driver antigen is developed to follow the activation and differentiation of naive tumor-specific CD8(+) T (TST) cells after tumor initiation and shows dysfunction early during the pre-malignant phase of tumorigenesis.

Journal ArticleDOI
TL;DR: This review provides a full spectrum of STAT3's involvement in breast cancers by consolidating the knowledge about its role in breast cancer development at multiple levels: its differential regulation by different receptor signaling pathways, its downstream target genes, and modification of its transcriptional activity by its coregulatory transcription factors.
Abstract: Signal transducer and activator of transcription 3 (STAT3) is constitutively activated in numerous cancer types, including more than 40% of breast cancers. In contrast to tight regulation of STAT3 as a latent transcription factor in normal cells, its signaling in breast cancer oncogenesis is multifaceted. Signaling through the IL-6/JAK/STAT3 pathway initiated by the binding of IL-6 family of cytokines (i.e., IL-6 and IL-11) to their receptors have been implicated in breast cancer development. Receptors with intrinsic kinase activity such as EGFR and VEGFR directly or indirectly induce STAT3 activation in various breast cancer types. Aberrant STAT3 signaling promotes breast tumor progression through deregulation of the expression of downstream target genes which control proliferation (Bcl-2, Bcl-xL, Survivin, Cyclin D1, c-Myc and Mcl-1), angiogenesis (Hif1α and VEGF) and epithelial-mesenchymal transition (Vimentin, TWIST, MMP-9 and MMP-7). These multiple modes of STAT3 regulation therefore make it a central linking point for a multitude of signaling processes. Extensive efforts to target STAT3 activation in breast cancer had no remarkable success in the past because the highly interconnected nature of STAT3 signaling introduces lack of selectivity in pathway identification for STAT3 targeted molecular therapies or because its role in tumorigenesis may not be as critical as it was thought. This review provides a full spectrum of STAT3's involvement in breast cancer by consolidating the knowledge about its role in breast cancer development at multiple levels: its differential regulation by different receptor signaling pathways, its downstream target genes, and modification of its transcriptional activity by its coregulatory transcription factors.

Journal ArticleDOI
TL;DR: Key aspects of telomerase assembly, intracellular trafficking and recruitment to telomeres for completing DNA synthesis, which may provide novel targets for the development of anticancer agents are revealed.
Abstract: Telomeres maintain genomic integrity in normal cells, and their progressive shortening during successive cell divisions induces chromosomal instability. In the large majority of cancer cells, telomere length is maintained by telomerase. Thus, telomere length and telomerase activity are crucial for cancer initiation and the survival of tumors. Several pathways that regulate telomere length have been identified, and genome-scale studies have helped in mapping genes that are involved in telomere length control. Additionally, genomic screening for recurrent human telomerase gene hTERT promoter mutations and mutations in genes involved in the alternative lengthening of telomeres pathway, such as ATRX and DAXX, has elucidated how these genomic changes contribute to the activation of telomere maintenance mechanisms in cancer cells. Attempts have also been made to develop telomere length- and telomerase-based diagnostic tools and anticancer therapeutics. Recent efforts have revealed key aspects of telomerase assembly, intracellular trafficking and recruitment to telomeres for completing DNA synthesis, which may provide novel targets for the development of anticancer agents. Here, we summarize telomere organization and function and its role in oncogenesis. We also highlight genomic mutations that lead to reactivation of telomerase, and mechanisms of telomerase reconstitution and trafficking that shed light on its function in cancer initiation and tumor development. Additionally, recent advances in the clinical development of telomerase inhibitors, as well as potential novel targets, will be summarized.

Journal ArticleDOI
20 Oct 2016-Nature
TL;DR: It is found that pancreatic cancer tumorigenesis is neither gradual nor follows the accepted mutation order, and changes in DNA copy number and their associated rearrangements in tumour-enriched genomes are tracked and challenged.
Abstract: Pancreatic cancer, a highly aggressive tumour type with uniformly poor prognosis, exemplifies the classically held view of stepwise cancer development. The current model of tumorigenesis, based on analyses of precursor lesions, termed pancreatic intraepithelial neoplasm (PanINs) lesions, makes two predictions: first, that pancreatic cancer develops through a particular sequence of genetic alterations (KRAS, followed by CDKN2A, then TP53 and SMAD4); and second, that the evolutionary trajectory of pancreatic cancer progression is gradual because each alteration is acquired independently. A shortcoming of this model is that clonally expanded precursor lesions do not always belong to the tumour lineage, indicating that the evolutionary trajectory of the tumour lineage and precursor lesions can be divergent. This prevailing model of tumorigenesis has contributed to the clinical notion that pancreatic cancer evolves slowly and presents at a late stage. However, the propensity for this disease to rapidly metastasize and the inability to improve patient outcomes, despite efforts aimed at early detection, suggest that pancreatic cancer progression is not gradual. Here, using newly developed informatics tools, we tracked changes in DNA copy number and their associated rearrangements in tumour-enriched genomes and found that pancreatic cancer tumorigenesis is neither gradual nor follows the accepted mutation order. Two-thirds of tumours harbour complex rearrangement patterns associated with mitotic errors, consistent with punctuated equilibrium as the principal evolutionary trajectory. In a subset of cases, the consequence of such errors is the simultaneous, rather than sequential, knockout of canonical preneoplastic genetic drivers that are likely to set-off invasive cancer growth. These findings challenge the current progression model of pancreatic cancer and provide insights into the mutational processes that give rise to these aggressive tumours.

Journal ArticleDOI
14 Apr 2016-Nature
TL;DR: In this article, the principal components of the necrosome, receptor-interacting protein (RIP)1 and RIP3, are highly expressed in pancreatic ductal adenocarcinoma (PDA) and are further upregulated by the chemotherapy drug gemcitabine.
Abstract: Neoplastic pancreatic epithelial cells are believed to die through caspase 8-dependent apoptotic cell death, and chemotherapy is thought to promote tumour apoptosis. Conversely, cancer cells often disrupt apoptosis to survive. Another type of programmed cell death is necroptosis (programmed necrosis), but its role in pancreatic ductal adenocarcinoma (PDA) is unclear. There are many potential inducers of necroptosis in PDA, including ligation of tumour necrosis factor receptor 1 (TNFR1), CD95, TNF-related apoptosis-inducing ligand (TRAIL) receptors, Toll-like receptors, reactive oxygen species, and chemotherapeutic drugs. Here we report that the principal components of the necrosome, receptor-interacting protein (RIP)1 and RIP3, are highly expressed in PDA and are further upregulated by the chemotherapy drug gemcitabine. Blockade of the necrosome in vitro promoted cancer cell proliferation and induced an aggressive oncogenic phenotype. By contrast, in vivo deletion of RIP3 or inhibition of RIP1 protected against oncogenic progression in mice and was associated with the development of a highly immunogenic myeloid and T cell infiltrate. The immune-suppressive tumour microenvironment associated with intact RIP1/RIP3 signalling depended in part on necroptosis-induced expression of the chemokine attractant CXCL1, and CXCL1 blockade protected against PDA. Moreover, cytoplasmic SAP130 (a subunit of the histone deacetylase complex) was expressed in PDA in a RIP1/RIP3-dependent manner, and Mincle--its cognate receptor--was upregulated in tumour-infiltrating myeloid cells. Ligation of Mincle by SAP130 promoted oncogenesis, whereas deletion of Mincle protected against oncogenesis and phenocopied the immunogenic reprogramming of the tumour microenvironment that was induced by RIP3 deletion. Cellular depletion suggested that whereas inhibitory macrophages promote tumorigenesis in PDA, they lose their immune-suppressive effects when RIP3 or Mincle is deleted. Accordingly, T cells, which are not protective against PDA progression in mice with intact RIP3 or Mincle signalling, are reprogrammed into indispensable mediators of anti-tumour immunity in the absence of RIP3 or Mincle. Our work describes parallel networks of necroptosis-induced CXCL1 and Mincle signalling that promote macrophage-induced adaptive immune suppression and thereby enable PDA progression.

Journal ArticleDOI
TL;DR: It is posited that in carcinogenesis, aberrant cell signaling due to exaggerated and continually high lactate levels yields an inappropriate positive feedback loop that increases glucose uptake, glycolysis, lactate production and release, decreases mitochondrial function and clearance and upregulates glyCOlytic enzyme and monocarboxylate transporter expression thereby supporting angiogenesis, immune escape, cell migration, metastasis and self-sufficient metabolism.
Abstract: Herein, we use lessons learned in exercise physiology and metabolism to propose that augmented lactate production ('lactagenesis'), initiated by gene mutations, is the reason and purpose of the Warburg Effect and that dysregulated lactate metabolism and signaling are the key elements in carcinogenesis. Lactate-producing ('lactagenic') cancer cells are characterized by increased aerobic glycolysis and excessive lactate formation, a phenomenon described by Otto Warburg 93 years ago, which still remains unexplained. After a hiatus of several decades, interest in lactate as a player in cancer has been renewed. In normal physiology, lactate, the obligatory product of glycolysis, is an important metabolic fuel energy source, the most important gluconeogenic precursor, and a signaling molecule (i.e. a 'lactormone') with major regulatory properties. In lactagenic cancers, oncogenes and tumor suppressor mutations behave in a highly orchestrated manner, apparently with the purpose of increasing glucose utilization for lactagenesis purposes and lactate exchange between, within and among cells. Five main steps are identified (i) increased glucose uptake, (ii) increased glycolytic enzyme expression and activity, (iii) decreased mitochondrial function, (iv) increased lactate production, accumulation and release and (v) upregulation of monocarboxylate transporters MTC1 and MCT4 for lactate exchange. Lactate is probably the only metabolic compound involved and necessary in all main sequela for carcinogenesis, specifically: angiogenesis, immune escape, cell migration, metastasis and self-sufficient metabolism. We hypothesize that lactagenesis for carcinogenesis is the explanation and purpose of the Warburg Effect. Accordingly, therapies to limit lactate exchange and signaling within and among cancer cells should be priorities for discovery.

Journal ArticleDOI
TL;DR: Findings support a model in which the EZH2/HOXA11-AS/LSD1 complex and HOXA 11- AS/miR-1297/EZh2 cross-talk serve as critical effectors in gastric cancer tumorigenesis and progression, suggesting new therapeutic directions in gastrics cancer.
Abstract: Long noncoding RNAs (lncRNA) have been implicated in human cancer but their mechanisms of action are mainly undocumented. In this study, we investigated lncRNA alterations that contribute to gastric cancer through an analysis of The Cancer Genome Atlas RNA sequencing data and other publicly available microarray data. Here we report the gastric cancer–associated lncRNA HOXA11-AS as a key regulator of gastric cancer development and progression. Patients with high HOXA11-AS expression had a shorter survival and poorer prognosis. In vitro and in vivo assays of HOXA11-AS alterations revealed a complex integrated phenotype affecting cell growth, migration, invasion, and apoptosis. Strikingly, high-throughput sequencing analysis after HOXA11-AS silencing highlighted alterations in cell proliferation and cell–cell adhesion pathways. Mechanistically, EZH2 along with the histone demethylase LSD1 or DNMT1 were recruited by HOXA11-AS, which functioned as a scaffold. HOXA11-AS also functioned as a molecular sponge for miR-1297, antagonizing its ability to repress EZH2 protein translation. In addition, we found that E2F1 was involved in HOXA11-AS activation in gastric cancer cells. Taken together, our findings support a model in which the EZH2/HOXA11-AS/LSD1 complex and HOXA11-AS/miR-1297/EZH2 cross-talk serve as critical effectors in gastric cancer tumorigenesis and progression, suggesting new therapeutic directions in gastric cancer. Cancer Res; 76(21); 6299–310. ©2016 AACR.

Journal ArticleDOI
TL;DR: A highly multiplexed single-nucleus sequencing method is developed to investigate copy number evolution in patients with triple-negative breast cancer, showing that the majority of copy number aberrations are acquired at the earliest stages of tumor evolution, in short punctuated bursts that form the tumor mass.
Abstract: Aneuploidy is a hallmark of breast cancer; however, knowledge of how these complex genomic rearrangements evolve during tumorigenesis is limited. In this study, we developed a highly multiplexed single-nucleus sequencing method to investigate copy number evolution in patients with triple-negative breast cancer. We sequenced 1,000 single cells from tumors in 12 patients and identified 1-3 major clonal subpopulations in each tumor that shared a common evolutionary lineage. For each tumor, we also identified a minor subpopulation of non-clonal cells that were classified as metastable, pseudodiploid or chromazemic. Phylogenetic analysis and mathematical modeling suggest that these data are unlikely to be explained by the gradual accumulation of copy number events over time. In contrast, our data challenge the paradigm of gradual evolution, showing that the majority of copy number aberrations are acquired at the earliest stages of tumor evolution, in short punctuated bursts, followed by stable clonal expansions that form the tumor mass.

Journal ArticleDOI
TL;DR: The complex role of HIF‐1 and its context‐dependent partners under various cancer‐promoting events including inflammation and generation of cancer stem cells, which are implicated in tumor metastasis and relapse are discussed.
Abstract: The complex cross-talk of intricate intercellular signaling networks between the tumor and stromal cells promotes cancer progression. Hypoxia is one of the most common conditions encountered within the tumor microenvironment that drives tumorigenesis. Most responses to hypoxia are elicited by a family of transcription factors called hypoxia-inducible factors (HIFs), which induce expression of a diverse set of genes that assist cells to adapt to hypoxic environments. Among the three HIF protein family members, the role of HIF-1 is well established in cancer progression. HIF-1 functions as a signaling hub to coordinate the activities of many transcription factors and signaling molecules that impact tumorigenesis. This mini review discusses the complex role of HIF-1 and its context-dependent partners under various cancer-promoting events including inflammation and generation of cancer stem cells, which are implicated in tumor metastasis and relapse. In addition, the review highlights the importance of therapeutic targeting of HIF-1 for cancer prevention.

Journal ArticleDOI
TL;DR: Functional analysis of the mutations in MYCN, PTPN14 and LATS1 suggested their potential relevance in BCC tumorigenesis, and the mutational profiles, N-Myc and Hippo-YAP pathway target genes were upregulated.
Abstract: Basal cell carcinoma (BCC) of the skin is the most common malignant neoplasm in humans. BCC is primarily driven by the Sonic Hedgehog (Hh) pathway. However, its phenotypic variation remains unexplained. Our genetic profiling of 293 BCCs found the highest mutation rate in cancer (65 mutations/Mb). Eighty-five percent of the BCCs harbored mutations in Hh pathway genes (PTCH1, 73% or SMO, 20% (P = 6.6 × 10(-8)) and SUFU, 8%) and in TP53 (61%). However, 85% of the BCCs also harbored additional driver mutations in other cancer-related genes. We observed recurrent mutations in MYCN (30%), PPP6C (15%), STK19 (10%), LATS1 (8%), ERBB2 (4%), PIK3CA (2%), and NRAS, KRAS or HRAS (2%), and loss-of-function and deleterious missense mutations were present in PTPN14 (23%), RB1 (8%) and FBXW7 (5%). Consistent with the mutational profiles, N-Myc and Hippo-YAP pathway target genes were upregulated. Functional analysis of the mutations in MYCN, PTPN14 and LATS1 suggested their potential relevance in BCC tumorigenesis.

Journal ArticleDOI
TL;DR: Determining the role of cancer stem cell metabolism in carcinogenesis has become a major focus in cancer research, and substantial efforts are conducted towards discovering clinical targets.
Abstract: Cancer is now viewed as a stem cell disease. There is still no consensus on the metabolic characteristics of cancer stem cells, with several studies indicating that they are mainly glycolytic and others pointing instead to mitochondrial metabolism as their principal source of energy. Cancer stem cells also seem to adapt their metabolism to microenvironmental changes by conveniently shifting energy production from one pathway to another, or by acquiring intermediate metabolic phenotypes. Determining the role of cancer stem cell metabolism in carcinogenesis has become a major focus in cancer research, and substantial efforts are conducted towards discovering clinical targets.

Journal ArticleDOI
TL;DR: Mechanistic evidence is provided that NEAT1 promotes ATR signaling in response to replication stress and is thereby engaged in a negative feedback loop that attenuates oncogene-dependent activation of p53.
Abstract: In a search for mediators of the p53 tumor suppressor pathway, which induces pleiotropic and often antagonistic cellular responses, we identified the long noncoding RNA (lncRNA) NEAT1. NEAT1 is an essential architectural component of paraspeckle nuclear bodies, whose pathophysiological relevance remains unclear. Activation of p53, pharmacologically or by oncogene-induced replication stress, stimulated the formation of paraspeckles in mouse and human cells. Silencing Neat1 expression in mice, which prevents paraspeckle formation, sensitized preneoplastic cells to DNA-damage-induced cell death and impaired skin tumorigenesis. We provide mechanistic evidence that NEAT1 promotes ATR signaling in response to replication stress and is thereby engaged in a negative feedback loop that attenuates oncogene-dependent activation of p53. NEAT1 targeting in established human cancer cell lines induced synthetic lethality with genotoxic chemotherapeutics, including PARP inhibitors, and nongenotoxic activation of p53. This study establishes a key genetic link between NEAT1 paraspeckles, p53 biology and tumorigenesis and identifies NEAT1 as a promising target to enhance sensitivity of cancer cells to both chemotherapy and p53 reactivation therapy.

Journal ArticleDOI
TL;DR: It is demonstrated that MYC-overexpressing TNBC shows an increased bioenergetic reliance on FAO and the inhibition of FAO is identified as a potential therapeutic strategy for this subset of breast cancer.
Abstract: Expression of the oncogenic transcription factor MYC is disproportionately elevated in triple-negative breast cancer (TNBC), as compared to estrogen receptor-, progesterone receptor- or human epidermal growth factor 2 receptor-positive (RP) breast cancer. We and others have shown that MYC alters metabolism during tumorigenesis. However, the role of MYC in TNBC metabolism remains mostly unexplored. We hypothesized that MYC-dependent metabolic dysregulation is essential for the growth of MYC-overexpressing TNBC cells and may identify new therapeutic targets for this clinically challenging subset of breast cancer. Using a targeted metabolomics approach, we identified fatty acid oxidation (FAO) intermediates as being dramatically upregulated in a MYC-driven model of TNBC. We also identified a lipid metabolism gene signature in patients with TNBC that were identified from The Cancer Genome Atlas database and from multiple other clinical data sets, implicating FAO as a dysregulated pathway that is critical for TNBC cell metabolism. We found that pharmacologic inhibition of FAO catastrophically decreased energy metabolism in MYC-overexpressing TNBC cells and blocked tumor growth in a MYC-driven transgenic TNBC model and in a MYC-overexpressing TNBC patient-derived xenograft. These findings demonstrate that MYC-overexpressing TNBC shows an increased bioenergetic reliance on FAO and identify the inhibition of FAO as a potential therapeutic strategy for this subset of breast cancer.

Journal ArticleDOI
18 Feb 2016-Oncogene
TL;DR: The current understanding of the CXCL12/CXCR4 axis in cancer tumorigenesis and progression is reviewed and its therapeutic implications are discussed.
Abstract: Increasing evidence indicates that the tumor microenvironment has critical roles in all aspects of cancer biology, including growth, angiogenesis, metastasis and progression. Although chemokines and their receptors were originally identified as mediators of inflammatory diseases, it is being increasingly recognized that they serve as critical communication bridges between tumor cells and stromal cells to create a permissive microenvironment for tumor growth and metastasis. Thus, an important therapeutic strategy for cancer is to break this communication channel and isolate tumor cells for long-term elimination. Cytokine CXCL12 (also known as stromal-derived factor 1α) and its receptor CXCR4 represent the most promising actionable targets for this strategy. Both are overexpressed in various cancer types, and this aberrant expression strongly promotes proliferation, migration and invasion through multiple signal pathways. Several molecules that target CXCL12 or CXCR4 have been developed to interfere with tumor growth and metastasis. In this article, we review our current understanding of the CXCL12/CXCR4 axis in cancer tumorigenesis and progression and discuss its therapeutic implications.

Journal ArticleDOI
TL;DR: An overview of the function of normal and mutated IDH is provided, the role of IDH mutations in tumorigenesis and progression is discussed and the key clinical considerations when treating IDH-mutated tumors are reviewed based on emerging clinical data from mutant IDH1/2 inhibitor trials.

Journal ArticleDOI
TL;DR: It is found that lncRNA‐DANCR is overexpressed in stem‐like HCC cells, and this can serve as a prognostic biomarker for HCC patients and offer a potential prognostic marker and a therapeutic target for H CC.