scispace - formally typeset
Search or ask a question
Topic

Carcinogenesis

About: Carcinogenesis is a research topic. Over the lifetime, 60368 publications have been published within this topic receiving 3192599 citations. The topic is also known as: oncogenesis & tumorigenesis.


Papers
More filters
Journal ArticleDOI
TL;DR: Mutations in AXIN2 cause colorectal cancer with defective mismatch repair by activating β-catenin/TCF signalling.
Abstract: Mutations in AXIN2 cause colorectal cancer with defective mismatch repair by activating β-catenin/TCF signalling

501 citations

Journal ArticleDOI
01 Jan 1986-Nature
TL;DR: It is reported that high-level expression of N- and L-myc is very restricted with respect to tissue and stage in the developing mouse, while that of c- myc is more generalized, suggesting that differential myc gene expression has a role in mammalian development and that the normal expression patterns of these genes generally predict the types of tumours in which they are expressed or activated.
Abstract: The myc family of cellular oncogenes contains three known members. The N-myc and c-myc genes have 5'-noncoding exons, strikingly homologous coding regions, and display similar oncogenic potential in an in vitro transformation assay. The L-myc gene is less well characterized, but shows homology to N-myc and c-myc (ref. 6; also see below). c-myc is expressed in most dividing cells, and deregulated expression of this gene has been implicated in the development of many classes of tumours. In contrast, expression of N-myc has been found only in a restricted set of tumours, most of which show neural characteristics; these include human neuroblastoma, retinoblastoma and small cell lung carcinoma (SCLC). L-myc expression has so far been found only in SCLC. Activated N-myc and L-myc expression has been implicated in oncogenesis; for example, although N-myc expression has been found in all neuroblastomas tested, activated (greatly increased) N-myc expression, resulting from gene amplification, is correlated with progression of the tumour. We now report that high-level expression of N- and L-myc is very restricted with respect to tissue and stage in the developing mouse, while that of c-myc is more generalized. Furthermore, we demonstrate that N-myc is not simply a neuroectoderm-specific gene; both N- and L-myc seem to be involved in the early stages of multiple differentiation pathways. Our findings suggest that differential myc gene expression has a role in mammalian development and that the normal expression patterns of these genes generally predict the types of tumours in which they are expressed or activated.

500 citations

Journal ArticleDOI
TL;DR: The studies suggest that HMGB1 is central to cancer (abnormal wound healing) and many of the findings in normal wound healing as well and therapeutic strategies based on targetingHMGB1 are suggested.

500 citations

Journal ArticleDOI
TL;DR: A new method, methylation-specific digital karyotyping, was developed and applied to epithelial and myoepithelial cells, stromal fibroblasts from normal breast tissue, and in situ and invasive breast carcinomas and showed that distinct epigenetic alterations occur in all three cell types during breast tumorigenesis, suggesting that epigenetic changes have a role in the maintenance of the abnormal cellular microenvironment in breast cancer.
Abstract: Increasing evidence suggests that changes in the cellular microenvironment contribute to tumorigenesis, but the molecular basis of these alterations is not well understood. Although epigenetic modifications of the neoplastic cells in tumors have been firmly implicated in tumorigenesis, it is not known whether epigenetic modifications occur in the non-neoplastic stromal cells. To address this question in an unbiased and genome-wide manner, we developed a new method, methylation-specific digital karyotyping, and applied it to epithelial and myoepithelial cells, stromal fibroblasts from normal breast tissue, and in situ and invasive breast carcinomas. Our analyses showed that distinct epigenetic alterations occur in all three cell types during breast tumorigenesis in a tumor stage- and cell type-specific manner, suggesting that epigenetic changes have a role in the maintenance of the abnormal cellular microenvironment in breast cancer.

500 citations

Journal ArticleDOI
TL;DR: In this article, a family of intracellular mediators, the Smads, has been identified for understanding mechanisms of subversion of TGF-beta signaling by tumor cells.
Abstract: Signaling from transforming growth factor-beta (TGF-beta) through its unique transmembrane receptor serine-threonine kinases plays a complex role in carcinogenesis, having both tumor suppressor and oncogenic activities. Tumor cells often escape from the antiproliferative effects of TGF-beta by mutational inactivation or dysregulated expression of components in its signaling pathway. Decreased receptor function and altered ratios of the TGF-beta type I and type II receptors found in many tumor cells compromise the tumor suppressor activities of TGF-beta and enable its oncogenic functions. Recent identification of a family of intracellular mediators, the Smads, has provided new paradigms for understanding mechanisms of subversion of TGF-beta signaling by tumor cells. In addition, several proteins recently have been identified that can modulate the Smad-signaling pathway and may also be targets for mutation in cancer. Other pathways such as various mitogen-activated protein kinase cascades also contribute substantially to TGF-beta signaling. Understanding the interplay between these signaling cascades as well as the complex patterns of cross-talk with other signaling pathways is an important area of investigation that will ultimately contribute to understanding of the bifunctional tumor suppressor/oncogene role of TGF-beta in carcinogenesis.

500 citations


Network Information
Related Topics (5)
Cell growth
104.2K papers, 3.7M citations
94% related
Cancer
339.6K papers, 10.9M citations
93% related
Apoptosis
115.4K papers, 4.8M citations
92% related
Cell culture
133.3K papers, 5.3M citations
91% related
Programmed cell death
60.5K papers, 3.8M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20239,028
20227,271
20213,536
20203,486
20193,433
20183,073