scispace - formally typeset
Search or ask a question
Topic

Carcinogenesis

About: Carcinogenesis is a research topic. Over the lifetime, 60368 publications have been published within this topic receiving 3192599 citations. The topic is also known as: oncogenesis & tumorigenesis.


Papers
More filters
01 Jul 2009
TL;DR: It is shown through phosphoprotein profiling and functional genomic studies that many PIK3CA mutant cancer cell lines and human breast tumors exhibit only minimal AKT activation and a diminished reliance on AKT for anchorage-independent growth.
Abstract: Dysregulation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway occurs frequently in human cancer. PTEN tumor suppressor or PIK3CA oncogene mutations both direct PI3K-dependent tumorigenesis largely through activation of the AKT/PKB kinase. However, here we show through phosphoprotein profiling and functional genomic studies that many PIK3CA mutant cancer cell lines and human breast tumors exhibit only minimal AKT activation and a diminished reliance on AKT for anchorage-independent growth. Instead, these cells retain robust PDK1 activation and membrane localization and exhibit dependency on the PDK1 substrate SGK3. SGK3 undergoes PI3K- and PDK1-dependent activation in PIK3CA mutant cancer cells. Thus, PI3K may promote cancer through both AKT-dependent and AKT-independent mechanisms. Knowledge of differential PI3K/PDK1 signaling could inform rational therapeutics in cancers harboring PIK3CA mutations.

445 citations

Journal ArticleDOI
09 Aug 1984-Nature
TL;DR: When linked to transcriptional enhancers, the mutant Ha-ras-1 gene from the T24 bladder carcinoma cell line induces the complete malignant transformation of early passage cells, while the normal Haras- 1 proto-oncogene only induces immortalization as discussed by the authors.
Abstract: When linked to transcriptional enhancers, the mutant Ha-ras-1 gene from the T24 bladder carcinoma cell line induces the complete malignant transformation of early passage cells, while the normal Ha-ras-1 proto-oncogene only induces immortalization. Therefore, mutated Ha-ras-1 does not require a cooperating gene to trigger malignant conversion and ras genes may be involved in the process of tumorigenesis at an earlier stage than previously suspected.

445 citations

Journal ArticleDOI
TL;DR: EMT-ATFs have been shown to cooperate in oncogenic transformation, regulate cancer cell stemness, override safeguard programs against cancer like apoptosis and senescence, determine resistance to chemotherapy and promote tumor angiogenesis.
Abstract: Cancer is a complex multistep process involving genetic and epigenetic changes that eventually result in the activation of oncogenic pathways and/or inactivation of tumor suppressor signals. During cancer progression, cancer cells acquire a number of hallmarks that promote tumor growth and invasion. A crucial mechanism by which carcinoma cells enhance their invasive capacity is the dissolution of intercellular adhesions and the acquisition of a more motile mesenchymal phenotype as part of an epithelial-to-mesenchymal transition (EMT). Although many transcription factors can trigger it, the full molecular reprogramming occurring during an EMT is mainly orchestrated by three major groups of transcription factors: the ZEB, Snail and Twist families. Upregulated expression of these EMT-activating transcription factors (EMT-ATFs) promotes tumor invasiveness in cell lines and xenograft mice models and has been associated with poor clinical prognosis in human cancers. Evidence accumulated in the last few years indicates that EMT-ATFs also regulate an expanding set of cancer cell capabilities beyond tumor invasion. Thus, EMT-ATFs have been shown to cooperate in oncogenic transformation, regulate cancer cell stemness, override safeguard programs against cancer like apoptosis and senescence, determine resistance to chemotherapy and promote tumor angiogenesis. This article reviews the expanding portfolio of functions played by EMT-ATFs in cancer progression.

444 citations

Journal ArticleDOI
TL;DR: Mitochondrial genomic aberrations reported in solid tumors of the breast, colon, stomach, liver, kidney, bladder, head/neck and lung as well as for hematologic diseases such as leukemia, myelodysplastic syndrome and lymphoma are reviewed.
Abstract: Alterations in expression of mitochondrial DNA (mtDNA)-encoded polypeptides required for oxidative phosphorylation and cellular ATP generation may be a general characteristic of cancer cells. Mitochondrial DNA has been proposed to be involved in carcinogenesis because of high susceptibility to mutations and limited repair mechanisms in comparison to nuclear DNA. Since mtDNA lacks introns, it has been suggested that most mutations will occur in coding sequences and subsequent accumulation of mutations may lead to tumor formation. The mitochondrial genome is dependent upon the nuclear genome for transcription, translation, replication and repair, but precise mechanisms for how the two genomes interact and integrate with each other are poorly understood. In solid tumors, elevated expression of mtDNA-encoded subunits of the mitochondrial electron respiratory chain may reflect mitochondrial adaptation to perturbations in cellular energy requirements. In this paper, we review mitochondrial genomic aberrations reported in solid tumors of the breast, colon, stomach, liver, kidney, bladder, head/neck and lung as well as for hematologic diseases such as leukemia, myelodysplastic syndrome and lymphoma. We include data for elevated expression of mtDNA-encoded electron respiratory chain subunits in breast, colon and liver cancers and also the mutations reported in cancers of the colon, stomach, bladder, head/neck and lung. Finally, we examine the role of reactive oxygen species (ROS) generated by mitochondria in the process of carcinogenesis.

444 citations


Network Information
Related Topics (5)
Cell growth
104.2K papers, 3.7M citations
94% related
Cancer
339.6K papers, 10.9M citations
93% related
Apoptosis
115.4K papers, 4.8M citations
92% related
Cell culture
133.3K papers, 5.3M citations
91% related
Programmed cell death
60.5K papers, 3.8M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20239,028
20227,271
20213,536
20203,486
20193,433
20183,073