scispace - formally typeset
Search or ask a question
Topic

Carcinogenesis

About: Carcinogenesis is a research topic. Over the lifetime, 60368 publications have been published within this topic receiving 3192599 citations. The topic is also known as: oncogenesis & tumorigenesis.


Papers
More filters
Journal ArticleDOI
TL;DR: The mechanisms of HPV16 E6‐ and E7‐induced multistep carcinogenesis and recently identified functions of these onco‐proteins are reviewed.
Abstract: Human papillomaviruses (HPV) are believed to be the primary causal agents for development of pre-neoplastic and malignant lesions of the uterine cervix, and high-risk types such as type 16 and 18 are associated with more than 90% of all cervical carcinomas. The E6 and E7 genes of HPV are thought to play causative roles, since E6 promotes the degradation of p53 through its interaction with E6AP, an E3 ubiquitin ligase, whereas E7 binds to the retinoblastoma protein (pRb) and disrupts its complex formation with E2F transcription factors. Although prophylactic vaccines have become available, it is still necessary to clarify the mechanisms of HPV-induced carcinogenesis because of the widespread nature of HPV infection. Approximately 493,000 new cases of cervical cancer are diagnosed each year with approximately 274,000 mortalities due to invasive cervical cancer. In the present article, the mechanisms of HPV16 E6- and E7-induced multistep carcinogenesis and recently identified functions of these onco-proteins are reviewed.

439 citations

Journal ArticleDOI
TL;DR: It is reported that this segment of cDNA is additionally the target of somatic mutations in mesenchymal tumors among patients having no apparent predisposition to retinoblastoma and no previous evidence of retinOBlastoma.
Abstract: Retinoblastoma is a childhood tumor that can arise because of mutant alleles acquired as somatic or germinal mutations. The mutant allele can be carried in the germ line. The mutations creating these alleles act by inactivating copies of a recessive oncogene located within band q14 of chromosome 13 and termed the RB1 locus. We have reported isolation of a cDNA fragment that recognizes chromosomal sequences possessing many of the attributes of the retinoblastoma gene associated with the RB1 locus. We now report that this segment is additionally the target of somatic mutations in mesenchymal tumors among patients having no apparent predisposition to retinoblastoma and no previous evidence of retinoblastoma. These tumors provide additional evidence that the cloned sequences are representative of a gene that is a frequent target of inactivation during tumorigenesis. Sequence analysis of this cDNA provides little insight into its normal functional role.

439 citations

Journal ArticleDOI
TL;DR: This study provides the first evidence for an oncogenic activity ofmiR‐155, miR‐203, miM‐210 and miR-222 in the development of pancreatic cancer as has been reported for other tumor types.
Abstract: Pancreatic cancer is the eighth most common cancer and has an overall 5-year survival rate lower than 10%. Because of their ability to regulate gene expression, microRNAs can act as oncogenes or tumor-suppressor genes and so have garnered interest as possible prognostic and therapeutic markers during the last decade. However, the prognostic value of microRNA expression in pancreatic cancer has not been thoroughly investigated. We measured the levels of miR-155, miR-203, miR-210, miR-216, miR-217 and miR-222 by quantitative RT-PCR in a cohort of 56 microdissected pancreatic ductal adenocarcinomas (PDAC). These microRNAs were chosen as they had previously been shown to be differentially expressed in pancreatic tumors compared to normal tissues. The possible association of microRNA expression and patients' survival was examined using multivariate Cox's regression hazard analyses. Interestingly, significant correlations between elevated microRNA expression and overall survival were observed for miR-155 (RR = 2.50; p = 0.005), miR-203 (RR = 2.21; p = 0.017), miR-210 (RR = 2.48; p = 0.005) and miR-222 (RR = 2.05; p = 0.035). Furthermore, tumors from patients demonstrating elevated expression levels of all 4 microRNAs possessed a 6.2-fold increased risk of tumor-related death compared to patients whose tumors showed a lower expression of these microRNAs. This study provides the first evidence for an oncogenic activity of miR-155, miR-203, miR-210 and miR-222 in the development of pancreatic cancer as has been reported for other tumor types. Furthermore, the putative target genes for these microRNAs suggest a complex signaling network that can affect PDAC tumorigenesis and tumor progression.

439 citations

Journal ArticleDOI
TL;DR: It is shown that c-Myc significantly induces the expression of the H19 noncoding RNA in diverse cell types, including breast epithelial, glioblastoma, and fibroblast cells, and down-regulation of H19 significantly decreases breast and lung cancer cell clonogenicity and anchorage-independent growth.
Abstract: The product of the MYC oncogene is widely deregulated in cancer and functions as a regulator of gene transcription. Despite an extensive profile of regulated genes, the transcriptional targets of c-Myc essential for transformation remain unclear. In this study, we show that c-Myc significantly induces the expression of the H19 noncoding RNA in diverse cell types, including breast epithelial, glioblastoma, and fibroblast cells. c-Myc binds to evolutionarily conserved E-boxes near the imprinting control region to facilitate histone acetylation and transcriptional initiation of the H19 promoter. In addition, c-Myc down-regulates the expression of insulin-like growth factor 2 ( IGF2 ), the reciprocally imprinted gene at the H19/IGF2 locus. We show that c-Myc regulates these two genes independently and does not affect H19 imprinting. Indeed, allele-specific chromatin immunoprecipitation and expression analyses indicate that c-Myc binds and drives the expression of only the maternal H19 allele. The role of H19 in transformation is addressed using a knockdown approach and shows that down-regulation of H19 significantly decreases breast and lung cancer cell clonogenicity and anchorage-independent growth. In addition, c-Myc and H19 expression shows strong association in primary breast and lung carcinomas. This work indicates that c-Myc induction of the H19 gene product holds an important role in transformation. (Cancer Res 2006; 66(10): 5330-7)

439 citations

Journal ArticleDOI
TL;DR: The identification of tumor‐suppressive miRNAs,miR‐145, miR‐133a and miR-133b, directly control oncogenic FSCN1 gene, and could provide new insights into potential mechanisms of ESCC carcinogenesis.
Abstract: MicroRNAs (miRNAs), noncoding RNAs 21–25 nucleotides in length, regulate gene expression primarily at the posttranscriptional level. Growing evidence suggests that miRNAs are aberrantly expressed in many human cancers, and that they play significant roles in carcinogenesis and cancer progression. A search for miRNAs with a tumor-suppressive function in esophageal squamous cell carcinoma (ESCC) was performed using the miRNA expression signatures obtained from ESCC clinical specimens. A subset of 15 miRNAs was significantly downregulated in ESCC. A comparison of miRNA signatures from ESCC and our previous report identified 4 miRNAs that are downregulated in common (miR-145, miR-30a-3p, miR-133a and miR-133b), suggesting that these miRNAs are candidate tumor suppressors. Gain-of-function analysis revealed that 3 transfectants (miR-145, miR-133a and miR-133b) inhibit cell proliferation and cell invasion in ESCC cells. These miRNAs (miR-145, miR-133a and miR-133b), which have conserved sequences in the 3′UTR of FSCN1 (actin-binding protein, Fascin homolog 1), inhibited FSCN1 expression. The signal from a luciferase reporter assay was significantly decreased at 2 miR-145 target sites and 1 miR-133a/b site, suggesting both miRNAs directly regulate FSCN1. An FSCN1 loss-of-function assay found significant cell growth and invasion inhibition, implying an FSCN1 is associated with ESCC carcinogenesis. The identification of tumor-suppressive miRNAs, miR-145, miR-133a and miR-133b, directly control oncogenic FSCN1 gene. These signal pathways of ESCC could provide new insights into potential mechanisms of ESCC carcinogenesis.

439 citations


Network Information
Related Topics (5)
Cell growth
104.2K papers, 3.7M citations
94% related
Cancer
339.6K papers, 10.9M citations
93% related
Apoptosis
115.4K papers, 4.8M citations
92% related
Cell culture
133.3K papers, 5.3M citations
91% related
Programmed cell death
60.5K papers, 3.8M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20239,028
20227,271
20213,536
20203,486
20193,433
20183,073