scispace - formally typeset
Search or ask a question
Topic

Carcinogenesis

About: Carcinogenesis is a research topic. Over the lifetime, 60368 publications have been published within this topic receiving 3192599 citations. The topic is also known as: oncogenesis & tumorigenesis.


Papers
More filters
Journal ArticleDOI
08 Jan 1998-Nature
TL;DR: The molecular background of the Peutz–Jeghers syndrome, a rare hereditary disease in which there is predisposition to benign and malignant tumours of many organ systems, is investigated and truncating germline mutations in a gene residing on chromosome 19p are identified.
Abstract: Studies of hereditary cancer syndromes have contributed greatly to our understanding of molecular events involved in tumorigenesis. Here we investigate the molecular background of the Peutz-Jeghers syndrome (PJS), a rare hereditary disease in which there is predisposition to benign and malignant tumours of many organ systems. A locus for this condition was recently assigned to chromosome 19p. We have identified truncating germline mutations in a gene residing on chromosome 19p in multiple individuals affected by PJS. This previously identified but unmapped gene, LKB1, has strong homology to a cytoplasmic Xenopus serine/threonine protein kinase XEEK1, and weaker similarity to many other protein kinases. Peutz-Jeghers syndrome is therefore the first cancer-susceptibility syndrome to be identified that is due to inactivating mutations in a protein kinase.

1,608 citations

Journal ArticleDOI
TL;DR: The enforced expression of miR-29s in lung cancer cell lines restores normal patterns of DNA methylation, induces reexpression of methylation-silenced tumor suppressor genes, and inhibits tumorigenicity in vitro and in vivo.
Abstract: MicroRNAs (miRNAs) are small, noncoding RNAs that regulate expression of many genes. Recent studies suggest roles of miRNAs in carcinogenesis. We and others have shown that expression profiles of miRNAs are different in lung cancer vs. normal lung, although the significance of this aberrant expression is poorly understood. Among the reported down-regulated miRNAs in lung cancer, the miRNA (miR)-29 family (29a, 29b, and 29c) has intriguing complementarities to the 3′-UTRs of DNA methyltransferase (DNMT)3A and -3B (de novo methyltransferases), two key enzymes involved in DNA methylation, that are frequently up-regulated in lung cancer and associated with poor prognosis. We investigated whether miR-29s could target DNMT3A and -B and whether restoration of miR-29s could normalize aberrant patterns of methylation in non-small-cell lung cancer. Here we show that expression of miR-29s is inversely correlated to DNMT3A and -3B in lung cancer tissues, and that miR-29s directly target both DNMT3A and -3B. The enforced expression of miR-29s in lung cancer cell lines restores normal patterns of DNA methylation, induces reexpression of methylation-silenced tumor suppressor genes, such as FHIT and WWOX, and inhibits tumorigenicity in vitro and in vivo. These findings support a role of miR-29s in epigenetic normalization of NSCLC, providing a rationale for the development of miRNA-based strategies for the treatment of lung cancer.

1,608 citations

Journal ArticleDOI
21 Jun 2012-Nature
TL;DR: Strong correlations between mutation number, age at which cancer was diagnosed and cancer histological grade are found, and multiple mutational signatures are observed, including one present in about ten per cent of tumours characterized by numerous mutations of cytosine at TpC dinucleotides.
Abstract: All cancers carry somatic mutations in their genomes. A subset, known as driver mutations, confer clonal selective advantage on cancer cells and are causally implicated in oncogenesis, and the remainder are passenger mutations. The driver mutations and mutational processes operative in breast cancer have not yet been comprehensively explored. Here we examine the genomes of 100 tumours for somatic copy number changes and mutations in the coding exons of protein-coding genes. The number of somatic mutations varied markedly between individual tumours. We found strong correlations between mutation number, age at which cancer was diagnosed and cancer histological grade, and observed multiple mutational signatures, including one present in about ten per cent of tumours characterized by numerous mutations of cytosine at TpC dinucleotides. Driver mutations were identified in several new cancer genes including AKT2, ARID1B, CASP8, CDKN1B, MAP3K1, MAP3K13, NCOR1, SMARCD1 and TBX3. Among the 100 tumours, we found driver mutations in at least 40 cancer genes and 73 different combinations of mutated cancer genes. The results highlight the substantial genetic diversity underlying this common disease.

1,606 citations

Journal ArticleDOI
TL;DR: Examining the mutational spectra of Ras isoforms curated from large-scale tumor profiling found that each isoform exhibits surprisingly distinctive codon mutation and amino-acid substitution biases, which were unexpected given that these mutations occur in regions that share 100% amino- acid sequence identity among the 3 isoforms.
Abstract: All mammalian cells express three closely related Ras proteins: H-Ras, K-Ras and N-Ras that promote oncogenesis when mutationally activated at codons 12, 13 or 61. Despite a high degree of similarity between the isoforms, K-Ras mutations are far more frequently observed in cancer and each isoform displays preferential coupling to particular cancer types. We have examined the mutation spectra of Ras isoforms curated from large-scale tumour profiling and found that each isoform exhibits surprisingly distinctive codon mutation and amino acid substitution biases. These were unexpected given that these mutations occur in regions that share 100% amino acid sequence identity between the three isoforms. Importantly, many of the mutational biases were not due to differences in exposure to mutagens because the patterns were still evident when compared within specific cancer types. We discuss potential genetic and epigenetic mechanisms together with isoform-specific differences in protein structure and signalling that may promote these distinct mutation patterns and differential coupling to specific cancers.

1,598 citations

Journal ArticleDOI
28 Aug 1998-Science
TL;DR: In multicellular organisms, mutations in somatic cells affecting critical genes that regulate cell proliferation and survival cause fatal cancers, and there exist potent mechanisms that limit the expansion of affected cells by suppressing their proliferation or triggering their suicide.
Abstract: In multicellular organisms, mutations in somatic cells affecting critical genes that regulate cell proliferation and survival cause fatal cancers. Repair of the damage is one obvious option, although the relative inconsequence of individual cells in metazoans means that it is often a “safer” strategy to ablate the offending cell. Not surprisingly, corruption of the machinery that senses or implements DNA damage greatly predisposes to cancer. Nonetheless, even when oncogenic mutations do occur, there exist potent mechanisms that limit the expansion of affected cells by suppressing their proliferation or triggering their suicide. Growing understanding of these innate mechanisms is suggesting novel therapeutic strategies for cancer.

1,579 citations


Network Information
Related Topics (5)
Cell growth
104.2K papers, 3.7M citations
94% related
Cancer
339.6K papers, 10.9M citations
93% related
Apoptosis
115.4K papers, 4.8M citations
92% related
Cell culture
133.3K papers, 5.3M citations
91% related
Programmed cell death
60.5K papers, 3.8M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20239,028
20227,271
20213,536
20203,486
20193,433
20183,073