scispace - formally typeset
Search or ask a question
Topic

Carcinogenesis

About: Carcinogenesis is a research topic. Over the lifetime, 60368 publications have been published within this topic receiving 3192599 citations. The topic is also known as: oncogenesis & tumorigenesis.


Papers
More filters
Journal ArticleDOI
12 Aug 2010-Nature
TL;DR: This study provides an overview of the mutational spectra across major human cancers and identifies several potential therapeutic targets.
Abstract: A large-scale genetic analysis of more than 400 breast, lung, ovarian and prostate cancer samples has identified thousands of cancer-related mutations. Kan et al. analysed DNA from cancer patients and identified 2,576 somatic mutations across 1,507 coding genes. Of these, 77 are thought to be significantly mutated, implying possible pathogenic roles for protein kinases, G protein-coupled receptors and other potential therapeutic targets. These authors performed a large-scale study in which they identified 2,576 somatic mutations across 1,507 coding genes from 441 breast, lung, ovarian and prostate cancer types and subtypes. The study provides an overview of the mutational spectra across major human cancers, implies an expanded role for Gα subunits in multiple cancer types and identifies several potential therapeutic targets. The systematic characterization of somatic mutations in cancer genomes is essential for understanding the disease and for developing targeted therapeutics1. Here we report the identification of 2,576 somatic mutations across ∼1,800 megabases of DNA representing 1,507 coding genes from 441 tumours comprising breast, lung, ovarian and prostate cancer types and subtypes. We found that mutation rates and the sets of mutated genes varied substantially across tumour types and subtypes. Statistical analysis identified 77 significantly mutated genes including protein kinases, G-protein-coupled receptors such as GRM8, BAI3, AGTRL1 (also called APLNR) and LPHN3, and other druggable targets. Integrated analysis of somatic mutations and copy number alterations identified another 35 significantly altered genes including GNAS, indicating an expanded role for gα subunits in multiple cancer types. Furthermore, our experimental analyses demonstrate the functional roles of mutant GNAO1 (a Gα subunit) and mutant MAP2K4 (a member of the JNK signalling pathway) in oncogenesis. Our study provides an overview of the mutational spectra across major human cancers and identifies several potential therapeutic targets.

901 citations

Journal ArticleDOI
TL;DR: Understanding to date of how mutations in the APC gene translate into changes at the protein level, which in turn contribute to the role of APC in tumorigenesis are dealt with.
Abstract: Familial adenomatous polyposis (FAP) is an autosomal dominant inherited disease characterized by the presence of adenomatous polyps in the colon and rectum, with inevitable development of colorectal cancer if left untreated. FAP is caused by germline mutations in the adenomatous polyposis coli (APC) gene. Somatic mutations in the APC gene are an early event in colorectal tumorigenesis, and can be detected in the majority of colorectal tumours. The APC gene encodes a large protein with multiple cellular functions and interactions, including roles in signal transduction in the wnt-signalling pathway, mediation of intercellular adhesion, stabilization of the cytoskeleton and possibly regulation of the cell cycle and apoptosis. The fact that APC is an integral part of so many different pathways makes it an ideal target for mutation in carcinogenesis. This review deals with our understanding to date of how mutations in the APC gene translate into changes at the protein level, which in turn contribute to the role of APC in tumorigenesis.

895 citations

Journal ArticleDOI
TL;DR: The present review highlights the role of GSH and related cytoprotective effects in the susceptibility to carcinogenesis and in the sensitivity of tumors to the cytotoxic effects of anticancer agents.
Abstract: Glutathione (GSH) plays an important role in a multitude of cellular processes, including cell differentiation, proliferation, and apoptosis, and disturbances in GSH homeostasis are involved in the etiology and progression of many human diseases including cancer. While GSH deficiency, or a decrease in the GSH/glutathione disulphide (GSSG) ratio, leads to an increased susceptibility to oxidative stress implicated in the progression of cancer, elevated GSH levels increase the antioxidant capacity and the resistance to oxidative stress as observed in many cancer cells. The present review highlights the role of GSH and related cytoprotective effects in the susceptibility to carcinogenesis and in the sensitivity of tumors to the cytotoxic effects of anticancer agents.

895 citations

Journal ArticleDOI
TL;DR: Human studies support the experimentally based notion of oxidative DNA damage as an important mutagenic and apparently carcinogenic factor in carcinogenesis, but the proof of a causal relationship in humans is still lacking.
Abstract: In living cells reactive oxygen species (ROS) are formed continuously as a consequence of metabolic and other biochemical reactions as well as external factors. Some ROS have important physiological functions. Thus, antioxidant defense systems cannot provide complete protection from noxious effects of ROS. These include oxidative damage to DNA, which experimental studies in animals and in vitro have suggested are an important factor in carcinogenesis. Despite extensive repair oxidatively modified DNA is abundant in human tissues, in particular in tumors, i.e., in terms of 1–200 modified nucleosides per 105 intact nucleosides. The damaged nucleosides accumulate with age in both nuclear and mitochondrial DNA. The products of repair of these lesions are excreted into the urine in amounts corresponding to a damage rate of up to 104 modifications in each cell every day. The most abundant of these lesions, 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG), is also the most mutagenic, resulting in GT transversions which are frequently found in tumor relevant genes. A series of other oxidative modifications of base and sugar residues occur frequently in DNA, but they are less well studied and their biological significance less apparent. The biomarkers for study of oxidative DNA damage in humans include urinary excretion of oxidized nucleosides and bases as repair products and modifications in DNA isolated from target tissue or surrogate cells, such as lymphocytes. These biomarkers reflect the rate of damage and the balance between the damage and repair rate, respectively. By means of biomarkers a number of important factors have been studied in humans. Ionizing radiation, a carcinogenic and pure source of ROS, induced both urinary and leukocyte biomarkers of oxidative DNA damage. Tobacco smoking, another carcinogenic source of ROS, increased the oxidative DNA damage rate by 35–50% estimated from the urinary excretion of 8-oxodG, and the level of 8-oxodG in leukocytes by 20–50%. The main endogenous source of ROS, the oxygen consumption, showed a close correlation with the 8-oxodG excretion rate although moderate exercise appeared to have no immediate effect. So far, cross-sectional study of diet composition and intervention studies, including energy restriction and antioxidant supplements, have generally failed to show an influence on the oxidative DNA modification. However, a diet rich of Brussels sprouts reduced the oxidative DNA damage rate, estimated by the urinary excretion of 8-oxodG, and the intake of vitamin C was a determinant for the level of 8-oxodG in sperm DNA. A low-fat diet reduced another marker of oxidative DNA damage in leukocytes. In patients with diseases associated with a mechanistically based increased risk of cancer, including Fanconi anemia, chronic hepatitis, cystic fibrosis, and various autoimmune diseases, the biomarker studies indicate an increased rate of oxidative DNA damage or in some instances deficient repair. Human studies support the experimentally based notion of oxidative DNA damage as an important mutagenic and apparently carcinogenic factor. However, the proof of a causal relationship in humans is still lacking. This could possibly be supported by demonstration of the rate of oxidative DNA damage as an independent risk factor for cancer in a prospective study of biobank material using a nested case control design. In addition, oxidative damage may be important for the aging process, particularly with respect to mitochondrial DNA and the pathogenesis of inflammatory diseases.

891 citations

Journal Article
TL;DR: Evidence is provided for HPV-16 E7-induced enhanced degradation of Rb protein via a ubiquitin-proteasome pathway and a second mechanism of oncogenic transformation by E7 is suggested, in addition to its previously identified ability to sequester Rb from E2F.
Abstract: Rb protein is a critical regulator of entry into the cell cycle, and loss of Rb function by deletions, mutations, or interaction with DNA viral oncoproteins leads to oncogenic transformation. We have shown that the human papilloma virus (HPV)-16 E7 gene is sufficient to induce the immortalization of mammary epithelial cells (MECs). Surprisingly, the steady-state level of Rb protein in these immortal cells was drastically decreased. Here, we used pulse-chase analysis to show that the in vivo loss of Rb protein in E7-immortalized MECs is a consequence of enhanced degradation. Expression of HPV16 E7 in a cell line with a temperature-sensitive mutation in the E1 enzyme of the ubiquitin pathway demonstrated that degradation of Rb was ubiquitin dependent. Treatment of E7-immortalized MECs with aldehyde inhibitors of proteasome-associated proteases led to a marked stabilization of Rb protein, particularly the hypophosphorylated form. Taken together, our results provide evidence for HPV-16 E7-induced enhanced degradation of Rb protein via a ubiquitin-proteasome pathway and suggest a second mechanism of oncogenic transformation by E7, in addition to its previously identified ability to sequester Rb from E2F. Our analyses also show that normal Rb levels are regulated by the ubiquitin-proteasome degradation pathway.

889 citations


Network Information
Related Topics (5)
Cell growth
104.2K papers, 3.7M citations
94% related
Cancer
339.6K papers, 10.9M citations
93% related
Apoptosis
115.4K papers, 4.8M citations
92% related
Cell culture
133.3K papers, 5.3M citations
91% related
Programmed cell death
60.5K papers, 3.8M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20239,028
20227,271
20213,536
20203,486
20193,433
20183,073