scispace - formally typeset
Search or ask a question
Topic

Cardiac cycle

About: Cardiac cycle is a research topic. Over the lifetime, 3290 publications have been published within this topic receiving 96159 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Compared to end diastole, peak axial and circumferential Lagrange strains occurred near end systole and had similar values, and the magnitudes of these strains varied along the longitudinal axis of the heart.
Abstract: A theoretical model is presented for the tubular heart of the stage-16 chick embryo (2.3 days of a 21-day incubation period). The model is a thick-walled, pseudoelastic cylindrical shell composed of three isotropic layers: the endocardium, the cardiac jelly, and the myocardium. The analysis is based on a shell theory that accounts for large deformation, material nonlinearity, residual strain, and muscle activation, with material properties inferred from available experimental data. We also measured epicardial strains from recorded motions of microspheres on the primitive right ventricles of stage-16 white Leghorn chick embryos. Relative to end diastole, peak axial and circumferential Lagrange strains occurred near end systole and had similar values. The magnitudes of these strains varied along the longitudinal axis of the heart (-0.16 +/- 0.08), being larger near the ends of the primitive right ventricle and smaller near midventricle. The in-plane shear strain was less than 0.05. Comparison of theoretical and experimental strains during the cardiac cycle shows generally good agreement. In addition, the model gives strong stress concentrations in the myocardial layer at end systole.

43 citations

Journal ArticleDOI
TL;DR: The assumption of a flat mean velocity profile across the mitral valve can introduce errors of +13 +/- 15% in cardiac output measured with pulsed Doppler ultrasound when one is interrogating a single center sample volume.

43 citations

Journal ArticleDOI
TL;DR: It is found that the left aortic valves were unable to cover the foramen of Panizza during any part of the cardiac cycle, supporting the reversed foramen flow hypothesis and ensuring a supply of blood to the coronary and cephalic circulation during a complete shut-down of the left side of the heart, such as might occur during prolonged submergence.
Abstract: Prolonged submergence imposes special demands on the cardiovascular system. Unlike the situation in diving birds and mammals, crocodilians have the ability to shunt blood away from the lungs, despite having an anatomically divided ventricle. This remarkable cardiovascular flexibility is due in part to three anatomical peculiarities: (1) an 'extra' aorta (the left aorta) that leaves the right ventricle and allows the blood from the right ventricle to take an alternative route into the systemic circulation instead of going to the lungs; (2) the foramen of Panizza, an aperture that connects the right and left aortas at their base immediately outside the ventricle; and (3) a set of connective tissue outpushings in the pulmonary outflow tract in the right ventricle. Using high-resolution angioscopy, we have studied these structures in the beating crocodile heart and correlated their movements with in vivo pressure and flow recordings. The connective tissue outpushings in the pulmonary outflow tract represent an active mechanism used to restrict blood flow into the lungs, thus creating one of the conditions required for a right-to-left shunt. We observed that the foramen of Panizza was obstructed by the medial cusp of the right aortic valve during most of systole, effectively differentiating the left and right aortic blood pressure. During diastole, however, the foramen remained open, allowing pressure equilibration between the two aortas. Contrary to current theories, we found that the left aortic valves were unable to cover the foramen of Panizza during any part of the cardiac cycle, supporting the reversed foramen flow hypothesis. This would ensure a supply of blood to the coronary and cephalic circulation during a complete shut-down of the left side of the heart, such as might occur during prolonged submergence.

43 citations

Journal ArticleDOI
TL;DR: The atrial booster pump contributes less to ventricular filling in mitral stenosis than in the normal heart, and the loss of atrial pump function is less important than the effect increasing heart rate as the cause of decompensation during atrial fibrillation.
Abstract: BACKGROUNDThe importance of the contribution of atrial systole to ventricular filling in mitral stenosis is controversial. The cause of reduced cardiac output following the onset of atrial fibrillation may be due to an increased heart rate, a loss of booster pump function, or both.METHODS AND RESULTSWe studied the atrial contribution to filling under a variety of conditions by combining noninvasive studies of patients with computer modeling. Thirty patients in sinus rhythm with mild-to-severe stenosis were studied with two-dimensional and Doppler echocardiography for measurement of mitral flow velocity and mitral valve area (MVA). The mean +/- SD atrial contribution to left ventricular filling volume was 18 +/- 10% and varied inversely with mitral resistance. Patients with mild mitral stenosis (MVA, 1.8 +/- 0.7 cm2) and severe mitral stenosis (MVA, 0.9 +/- 0.2 cm2) had atrial contributions of 29 +/- 4% and 9 +/- 5%, respectively. The pathophysiological mechanisms responsible for these trends were further ...

43 citations

Journal ArticleDOI
TL;DR: This review aims to discuss cardiac physiology and pathophysiology from the elementary membrane processes that can cause the electrical instability of the ventricular myocytes through intracellular Ca2+ handling maladies to inherited and acquired arrhythmias.
Abstract: Calcium ions (Ca2+) play a major role in the cardiac excitation-contraction coupling. Intracellular Ca2+ concentration increases during systole and falls in diastole thereby determining cardiac contraction and relaxation. Normal cardiac function also requires perfect organization of the ion currents at the cellular level to drive action potentials and to maintain action potential propagation and electrical homogeneity at the tissue level. Any imbalance in Ca2+ homeostasis of a cardiac myocyte can lead to electrical disturbances. This review aims to discuss cardiac physiology and pathophysiology from the elementary membrane processes that can cause the electrical instability of the ventricular myocytes through intracellular Ca2+ handling maladies to inherited and acquired arrhythmias. Finally, the paper will discuss the current therapeutic approaches targeting cardiac arrhythmias.

43 citations


Network Information
Related Topics (5)
Ejection fraction
47.6K papers, 1.6M citations
86% related
Heart failure
107.8K papers, 3.5M citations
85% related
Coronary artery disease
77.6K papers, 2.2M citations
84% related
Myocardial infarction
119K papers, 4.2M citations
84% related
Heart disease
42.8K papers, 1.6M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202377
2022178
202169
202068
201979
201876