scispace - formally typeset
Search or ask a question
Topic

Cascaded integrator–comb filter

About: Cascaded integrator–comb filter is a research topic. Over the lifetime, 849 publications have been published within this topic receiving 11508 citations.


Papers
More filters
Journal ArticleDOI
E. Hogenauer1
TL;DR: A class of digital linear phase finite impulse response (FIR) filters for decimation and interpolation and use limited storage making them an economical alternative to conventional implementations for certain applications.
Abstract: A class of digital linear phase finite impulse response (FIR) filters for decimation (sampling rate decrease) and interpolation (sampling rate increase) are presented. They require no multipliers and use limited storage making them an economical alternative to conventional implementations for certain applications. A digital filter in this class consists of cascaded ideal integrator stages operating at a high sampling rate and an equal number of comb stages operating at a low sampling rate. Together, a single integrator-comb pair produces a uniform FIR. The number of cascaded integrator-comb pairs is chosen to meet design requirements for aliasing or imaging error. Design procedures and examples are given for both decimation and interpolation filters with the emphasis on frequency response and register width.

1,372 citations

Book
01 Aug 1995
TL;DR: This paper presents a meta-modelling framework for designing and characterization of digital filters for discrete-Time signal processing applications.
Abstract: 1. Sampling and Reconstruction. 2. Quantization. 3. Discrete-Time Systems. 4. FIR Filtering and Convolution. 5. z-Transforms. 6. Transfer Functions. 7. Digital Filter Realizations. 8. Signal Processing Applications. 9. DFT/FFT Algorithms. 10. FIR Digital Filter Design. 11. IIR Digital Filter Design. 12. Interpolation, Decimation, and Oversampling. 13. Appendices. References. Index.

969 citations

Proceedings ArticleDOI
C.W. Farrow1
07 Jun 1988
TL;DR: An FIR (finite-impulse-response) filter which synthesizes a controllable delay which has the ability to interpolate between samples in the data stream of a band-limited signal is described.
Abstract: The author describes an FIR (finite-impulse-response) filter which synthesizes a controllable delay. By changing the delay the filter has the ability to interpolate between samples in the data stream of a band-limited signal. Because high sampling rates are not required, the filter is especially suited for implementation in a digital signal processor (DSP), and has been implemented in a real-time DSP. The interpolator can be used as a practical way to reconstruct an original band limited signal from samples taken at the Nyquist rate. The variable delay filter can also be used as a more general computational element. Performance results are presented. >

853 citations

Journal ArticleDOI
S. Biyiksiz1
01 Mar 1985
TL;DR: This book by Elliott and Rao is a valuable contribution to the general areas of signal processing and communications and can be used for a graduate level course in perhaps two ways.
Abstract: There has been a great deal of material in the area of discrete-time transforms that has been published in recent years. This book does an excellent job of presenting important aspects of such material in a clear manner. The book has 11 chapters and a very useful appendix. Seven of these chapters are essentially devoted to the Fourier series/transform, discrete Fourier transform, fast Fourier transform (FFT), and applications of the FFT in the area of spectral estimation. Chapters 8 through 10 deal with many other discrete-time transforms and algorithms to compute them. Of these transforms, the KarhunenLoeve, the discrete cosine, and the Walsh-Hadamard transform are perhaps the most well-known. A lucid discussion of number theoretic transforms i5 presented in Chapter 11. This reviewer feels that the authors have done a fine job of compiling the pertinent material and presenting it in a concise and clear manner. There are a number of problems at the end of each chapter, an appreciable number of which are challenging. The authors have included a comprehensive set of references at the end of the book. In brief, this book is a valuable contribution to the general areas of signal processing and communications. It can be used for a graduate level course in perhaps two ways. One would be to cover the first seven chapters in great detail. The other would be to cover the whole book by focussing on different topics in a selective manner. This book by Elliott and Rao is extremely useful to researchers/engineers who are working in the areas of signal processing and communications. It i s also an excellent reference book, and hence a valuable addition to one’s library

843 citations

Journal ArticleDOI
TL;DR: In this paper, a technique for implementing a finite impulse response (FIR) digital filter in a residue number system (RNS) is presented, and a new hardware implementation of the Chinese Remainder Theorem is proposed for an efficient translation of residue coded outputs into natural numbers.
Abstract: A technique is presented for implementing a finite impulse response (FIR) digital filter in a residue number system (RNS). For many years residue number coding has been recognized as a system which provides a capability for the implementation of high speed multiplication and addition. The advantages of residue coding for the design of high speed FIR filters result from the fact that an FIR requires only the high speed residue operations, i.e., addition and multiplication, while not requiring the slower RNS operations of division or sign detection. A new hardware implementation of the Chinese Remainder Theorem is proposed for an efficient translation of residue coded outputs into natural numbers. A numerical example illustrates the principles of residue encoding, residue arithmetic, and residue decoding for FIR filters. An RNS implementation of a 64th-order dual bandpass filter is compared with several alternative filter structures to illustrate tradeoffs between speed and hardware complexity.

294 citations


Network Information
Related Topics (5)
Filter (video)
114.4K papers, 886.6K citations
73% related
Signal processing
73.4K papers, 983.5K citations
71% related
Data compression
43.6K papers, 756.5K citations
70% related
Motion estimation
31.2K papers, 699K citations
69% related
Decoding methods
65.7K papers, 900K citations
68% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20233
202211
20217
20206
201918
201815