scispace - formally typeset
Search or ask a question
Topic

Catabolite repression

About: Catabolite repression is a research topic. Over the lifetime, 3615 publications have been published within this topic receiving 150608 citations. The topic is also known as: Catabolite repression.


Papers
More filters
Journal ArticleDOI
TL;DR: The most recent findings on the different mechanisms that have evolved to allow bacteria to use carbon sources in a hierarchical manner are discussed.
Abstract: Using the process of carbon catabolite repression (CCR), bacteria control gene expression and protein activity to preferentially metabolize the carbon sources that are most easily accessible and allow fastest growth. Recent findings have provided new insight into the mechanisms that different bacteria use to control CCR. Most bacteria can selectively use substrates from a mixture of different carbon sources. The presence of preferred carbon sources prevents the expression, and often also the activity, of catabolic systems that enable the use of secondary substrates. This regulation, called carbon catabolite repression (CCR), can be achieved by different regulatory mechanisms, including transcription activation and repression and control of translation by an RNA-binding protein, in different bacteria. Moreover, CCR regulates the expression of virulence factors in many pathogenic bacteria. In this Review, we discuss the most recent findings on the different mechanisms that have evolved to allow bacteria to use carbon sources in a hierarchical manner.

1,416 citations

Journal ArticleDOI
TL;DR: It is possible in certain cases to propose a partial model of the way in which the different elements involved in catabolite repression may be integrated, and preliminary evidence suggests that Snf1 is in a dephosphorylated state under these conditions.
Abstract: Glucose and related sugars repress the transcription of genes encoding enzymes required for the utilization of alternative carbon sources; some of these genes are also repressed by other sugars such as galactose, and the process is known as catabolite repression. The different sugars produce signals which modify the conformation of certain proteins that, in turn, directly or through a regulatory cascade affect the expression of the genes subject to catabolite repression. These genes are not all controlled by a single set of regulatory proteins, but there are different circuits of repression for different groups of genes. However, the protein kinase Snf1/Cat1 is shared by the various circuits and is therefore a central element in the regulatory process. Snf1 is not operative in the presence of glucose, and preliminary evidence suggests that Snf1 is in a dephosphorylated state under these conditions. However, the enzymes that phosphorylate and dephosphorylate Snf1 have not been identified, and it is not known how the presence of glucose may affect their activity. What has been established is that Snf1 remains active in mutants lacking either the proteins Grr1/Cat80 or Hxk2 or the Glc7 complex, which functions as a protein phosphatase. One of the main roles of Snf1 is to relieve repression by the Mig1 complex, but it is also required for the operation of transcription factors such as Adr1 and possibly other factors that are still unidentified. Although our knowledge of catabolite repression is still very incomplete, it is possible in certain cases to propose a partial model of the way in which the different elements involved in catabolite repression may be integrated.

1,246 citations

Journal ArticleDOI
TL;DR: It is proposed that hexokinase may have dual functions and may act as a key sensor and signal transmitter of sugar repression in higher plants and the involvement of glycolysis and other metabolic pathways is eliminated.
Abstract: Sugar repression of photosynthetic genes is likely a central control mechanism mediating energy homeostasis in a wide range of algae and higher plants. It overrides light activation and is coupled to developmental and environmental regulations. How sugar signals are sensed and transduced to the nucleus remains unclear. To elucidate sugar-sensing mechanisms, we monitored the effects of a variety of sugars, glucose analogs, and metabolic intermediates on photosynthetic fusion genes in a sensitive and versatile maize protoplast transient expression system. The results show that sugars that are the substrates of hexokinase (HK) cause repression at a low concentration (1 to 10 mM), indicating a low degree of specificity and the irrelevance of osmotic change. Studies with various glucose analogs suggest that glucose transport across the plasma membrane is necessary but not sufficient to trigger repression, whereas subsequent phosphorylation by HK may be required. The effectiveness of 2-deoxyglucose, a nonmetabolizable glucose analog, and the ineffectiveness of various metabolic intermediates in eliciting repression eliminate the involvement of glycolysis and other metabolic pathways. Replenishing intracellular phosphate and ATP diminished by hexoses does not overcome repression. Because mannoheptulose, a specific HK inhibitor, blocks the severe repression triggered by 2-deoxyglucose and yet the phosphorylated products per se do not act as repression signals, we propose that HK may have dual functions and may act as a key sensor and signal transmitter of sugar repression in higher plants.

693 citations

Journal ArticleDOI
12 Sep 1986-Science
TL;DR: Findings indicate that SNF1 encodes a protein kinase and suggest that protein phosphorylation plays a critical role in regulation by carbon catabolite repression in eukaryotic cells.
Abstract: The SNF1 gene plays a central role in carbon catabolite repression in the yeast Saccharomyces cerevisiae, namely that SNF1 function is required for expression of glucose-repressible genes. The nucleotide sequence of the cloned SNF1 gene was determined, and the predicted amino acid sequence shows that SNF1 encodes a 72,040-dalton polypeptide that has significant homology to the conserved catalytic domain of mammalian protein kinases. Specific antisera were prepared and used to identify the SNF1 protein. The protein was shown to transfer phosphate from adenosine triphosphate to serine and threonine residues in an in vitro autophosphorylation reaction. These findings indicate that SNF1 encodes a protein kinase and suggest that protein phosphorylation plays a critical role in regulation by carbon catabolite repression in eukaryotic cells.

664 citations

Journal ArticleDOI
Josef Deutscher1
TL;DR: The major CCR mechanisms operative in Enterobacteriaceae and Firmicutes are quite different, but in both types of organisms components of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) and protein phosphorylation play a major role.

610 citations


Network Information
Related Topics (5)
Operon
14.6K papers, 768.6K citations
91% related
Saccharomyces cerevisiae
32.1K papers, 1.6M citations
90% related
Yeast
31.7K papers, 868.9K citations
89% related
Escherichia coli
59K papers, 2M citations
88% related
Bacillus subtilis
19.6K papers, 539.4K citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202321
202286
202167
202055
201962
201871