scispace - formally typeset
Search or ask a question
Topic

Catalysis

About: Catalysis is a research topic. Over the lifetime, 400924 publications have been published within this topic receiving 8702469 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, gold catalysts were prepared by coprecipitation from an aqueous solution of HAuCl4 and the nitrates of various transition metals, including Auα-Fe2O3, AuCo3O4, and AuNiO.

2,917 citations

Journal ArticleDOI
TL;DR: Structural characterization and electrochemical studies confirmed that the nanosheets of the metallic MoS2 polymorph exhibit facile electrode kinetics and low-loss electrical transport and possess a proliferated density of catalytic active sites, which make these metallic nanOSheets a highly competitive earth-abundant HER catalyst.
Abstract: Promising catalytic activity from molybdenum disulfide (MoS2) in the hydrogen evolution reaction (HER) is attributed to active sites located along the edges of its two-dimensional layered crystal structure, but its performance is currently limited by the density and reactivity of active sites, poor electrical transport, and inefficient electrical contact to the catalyst. Here we report dramatically enhanced HER catalysis (an electrocatalytic current density of 10 mA/cm2 at a low overpotential of −187 mV vs RHE and a Tafel slope of 43 mV/decade) from metallic nanosheets of 1T-MoS2 chemically exfoliated via lithium intercalation from semiconducting 2H-MoS2 nanostructures grown directly on graphite. Structural characterization and electrochemical studies confirmed that the nanosheets of the metallic MoS2 polymorph exhibit facile electrode kinetics and low-loss electrical transport and possess a proliferated density of catalytic active sites. These distinct and previously unexploited features of 1T-MoS2 make ...

2,899 citations

Journal ArticleDOI
TL;DR: In this article, the authors tried to describe perhaps the most important solid acids based on inorganic oxides, going from their preparation procedures and characterization, to their catalytic activity for a series of hydrocarbon reactions.
Abstract: It is possible to say that solid acid catalysis involves the largest amounts of catalysts used and the largest economical effort in the oil refining and chemical industry. In this review the author has tried to describe perhaps the most important solid acids based on inorganic oxides, going from their preparation procedures and characterization, to their catalytic activity for a series of hydrocarbon reactions. The review starts with an introductory part in where the nature of the acid sites and their physicochemical characterization is described. Then the classification to the different catalysts is initiated with the older amorphous silica-alumina and aluminum phosphates and followed by catalysts with more interest at present which are discussed in order of increasing acid strength: zeolites, heteropoly acids, and sulfated metal oxides. The aim of this review is to present an extended summary of the state of the art and the current and the future tendencies in the field. 720 refs.

2,804 citations

Journal ArticleDOI
TL;DR: The Review presents the recent developments and the use of NP catalysis in organic synthesis, for example, in hydrogenation and C--C coupling reactions, and the heterogeneous oxidation of CO on gold NPs.
Abstract: Interest in catalysis by metal nanoparticles (NPs) is increasing dramatically, as reflected by the large number of publications in the last five years. This field, "semi-heterogeneous catalysis", is at the frontier between homogeneous and heterogeneous catalysis, and progress has been made in the efficiency and selectivity of reactions and recovery and recyclability of the catalytic materials. Usually NP catalysts are prepared from a metal salt, a reducing agent, and a stabilizer and are supported on an oxide, charcoal, or a zeolite. Besides the polymers and oxides that used to be employed as standard, innovative stabilizers, media, and supports have appeared, such as dendrimers, specific ligands, ionic liquids, surfactants, membranes, carbon nanotubes, and a variety of oxides. Ligand-free procedures have provided remarkable results with extremely low metal loading. The Review presents the recent developments and the use of NP catalysis in organic synthesis, for example, in hydrogenation and C--C coupling reactions, and the heterogeneous oxidation of CO on gold NPs.

2,790 citations

Journal ArticleDOI
TL;DR: This study shows that these r-RuO2 and r-IrO2 NPs can serve as a benchmark in the development of active OER catalysts for electrolyzers, metal-air batteries, and photoelectrochemical water splitting applications.
Abstract: The activities of the oxygen evolution reaction (OER) on iridium-oxide- and ruthenium-oxide-based catalysts are among the highest known to date. However, the OER activities of thermodynamically stable rutile iridium oxide (r-IrO2) and rutile iridium oxide (r-RuO2), normalized to catalyst mass or true surface area are not well-defined. Here we report a synthesis of r-IrO2 and r-RuO2 nanoparticles (NPs) of ∼6 nm, and examine their OER activities in acid and alkaline solutions. Both r-IrO2 and r-RuO2 NPs were highly active for OER, with r-RuO2 exhibiting up to 10 A/goxide at 1.48 V versus reversible hydrogen electrode. When comparing the two, r-RuO2 NPs were found to have slightly higher intrinsic and mass OER activities than r-IrO2 in both acid and basic solutions. Interestingly, these oxide NPs showed higher stability under OER conditions than commercial Ru/C and Ir/C catalysts. Our study shows that these r-RuO2 and r-IrO2 NPs can serve as a benchmark in the development of active OER catalysts for electrol...

2,762 citations


Network Information
Related Topics (5)
Alkyl
223.5K papers, 2M citations
93% related
Mesoporous material
43.7K papers, 1.3M citations
92% related
Ionic liquid
57.2K papers, 1.6M citations
91% related
Aryl
95.6K papers, 1.3M citations
91% related
Photocatalysis
67K papers, 2.1M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20243
202327,741
202252,812
202117,282
202018,255
201919,629