scispace - formally typeset
Search or ask a question
Topic

Catalyst poisoning

About: Catalyst poisoning is a research topic. Over the lifetime, 5028 publications have been published within this topic receiving 105516 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The literature treating mechanisms of catalyst deactivation is reviewed in this paper, which can be classified into six distinct types: (i) poisoning, (ii) fouling, (iii) thermal degradation, (iv) vapor compound formation accompanied by transport, (v) vapor solid and/or solid solid reactions, and (vi) attrition/crushing.
Abstract: The literature treating mechanisms of catalyst deactivation is reviewed. Intrinsic mechanisms of catalyst deactivation are many; nevertheless, they can be classified into six distinct types: (i) poisoning, (ii) fouling, (iii) thermal degradation, (iv) vapor compound formation accompanied by transport, (v) vapor-solid and/or solid-solid reactions, and (vi) attrition/crushing. As (i), (iv), and (v) are chemical in nature and (ii) and (v) are mechanical, the causes of deactivation are basically three-fold: chemical, mechanical and thermal. Each of these six mechanisms is defined and its features are illustrated by data and examples from the literature. The status of knowledge and needs for further work are also summarized for each type of deactivation mechanism. The development during the past two decades of more sophisticated surface spectroscopies and powerful computer technologies provides opportunities for obtaining substantially better understanding of deactivation mechanisms and building this understanding into comprehensive mathematical models that will enable more effective design and optimization of processes involving deactivating catalysts. © 2001 Elsevier Science B.V. All rights reserved.

2,526 citations

Journal ArticleDOI
11 Jul 2002-Nature
TL;DR: X-ray diffraction and absorption is used to show that LaFe0.05O3, one of the perovskite-based catalysts investigated for catalytic converter applications since the early 1970s, retains its high metal dispersion owing to structural responses to the fluctuations in exhaust-gas composition that occur in state-of-the-art petrol engines.
Abstract: Catalytic converters are widely used to reduce the amounts of nitrogen oxides, carbon monoxide and unburned hydrocarbons in automotive emissions. The catalysts are finely divided precious-metal particles dispersed on a solid support. During vehicle use, the converter is exposed to heat, which causes the metal particles to agglomerate and grow, and their overall surface area to decrease. As a result, catalyst activity deteriorates. The problem has been exacerbated in recent years by the trend to install catalytic converters closer to the engine, which ensures immediate activation of the catalyst on engine start-up, but also places demanding requirements on the catalyst's heat resistance. Conventional catalyst systems thus incorporate a sufficient excess of precious metal to guarantee continuous catalytic activity for vehicle use over 50,000 miles (80,000 km). Here we use X-ray diffraction and absorption to show that LaFe0.57Co0.38Pd0.05O3, one of the perovskite-based catalysts investigated1,2,3,4 for catalytic converter applications since the early 1970s, retains its high metal dispersion owing to structural responses to the fluctuations in exhaust-gas composition that occur in state-of-the-art petrol engines5. We find that as the catalyst is cycled between oxidative and reductive atmospheres typically encountered in exhaust gas, palladium (Pd) reversibly moves into and out of the perovskite lattice. This movement appears to suppress the growth of metallic Pd particles, and hence explains the retention of high catalyst activity during long-term use and ageing.

971 citations

Journal ArticleDOI
TL;DR: The catalyst was applied for three-phase hydrogenations of alkynes and nitroarenes in a continuous-flow reactor, showing its high activity and product selectivity in comparison with benchmark catalysts based on nanoparticles.
Abstract: We report the preparation and hydrogenation performance of a single-site palladium catalyst that was obtained by the anchoring of Pd atoms into the cavities of mesoporous polymeric graphitic carbon nitride. The characterization of the material confirmed the atomic dispersion of the palladium phase throughout the sample. The catalyst was applied for three-phase hydrogenations of alkynes and nitroarenes in a continuous-flow reactor, showing its high activity and product selectivity in comparison with benchmark catalysts based on nanoparticles. Density functional theory calculations provided fundamental insights into the material structure and attributed the high catalyst activity and selectivity to the facile hydrogen activation and hydrocarbon adsorption on atomically dispersed Pd sites.

725 citations

Journal ArticleDOI
TL;DR: In this paper, the causes of deactivation and the influence on reaction rate are discussed and methods for minimising catalyst deactivation, by tailoring catalyst properties and/or process operations, are presented.
Abstract: Catalyst deactivation is usually inevitable, although the rate at which it occurs varies greatly. This article discusses the causes of deactivation and the influence on reaction rate. Methods for minimising catalyst deactivation, by tailoring catalyst properties and/or process operations, are presented, as well as reactor configurations suitable for the regeneration of deactivated catalysts. Alkane dehydrogenation is used as an example to demonstrate the variety of engineering solutions possible.

639 citations

Journal ArticleDOI
TL;DR: Mechanism and Catalyst Deactivation Lisiane V. Mattos,† Gary Jacobs,‡ Burtron H. Davis,† and Fab́io B. Noronha.
Abstract: Mechanism and Catalyst Deactivation Lisiane V. Mattos,† Gary Jacobs,‡ Burtron H. Davis,‡ and Fab́io B. Noronha* †Departamento de Engenharia Química e de Petroĺeo, Universidade Federal Fluminense (UFF), Rua Passo da Pat́ria, 156-CEP 24210-240, Niteroí, RJ, Brazil ‡Center for Applied Energy Research, The University of Kentucky, 2540 Research Park Drive, Lexington, Kentucky 40511, United States Instituto Nacional de Tecnologia−INT, Av. Venezuela 82, CEP 20081-312, Rio de Janeiro, Brazil

625 citations


Network Information
Related Topics (5)
Catalysis
400.9K papers, 8.7M citations
87% related
Mesoporous material
43.7K papers, 1.3M citations
84% related
Photocatalysis
67K papers, 2.1M citations
81% related
Platinum
49.6K papers, 1.1M citations
80% related
Ionic liquid
57.2K papers, 1.6M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232
20225
202134
202026
201935
201851