scispace - formally typeset
Search or ask a question
Topic

Catechol-O-methyl transferase

About: Catechol-O-methyl transferase is a research topic. Over the lifetime, 1646 publications have been published within this topic receiving 87360 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The data suggest that the COMT Val allele, because it increases prefrontal dopamine catabolism, impairs prefrontal cognition and physiology, and by this mechanism slightly increases risk for schizophrenia.
Abstract: Abnormalities of prefrontal cortical function are prominent features of schizophrenia and have been associated with genetic risk, suggesting that susceptibility genes for schizophrenia may impact on the molecular mechanisms of prefrontal function. A potential susceptibility mechanism involves regulation of prefrontal dopamine, which modulates the response of prefrontal neurons during working memory. We examined the relationship of a common functional polymorphism (Val(108/158) Met) in the catechol-O-methyltransferase (COMT) gene, which accounts for a 4-fold variation in enzyme activity and dopamine catabolism, with both prefrontally mediated cognition and prefrontal cortical physiology. In 175 patients with schizophrenia, 219 unaffected siblings, and 55 controls, COMT genotype was related in allele dosage fashion to performance on the Wisconsin Card Sorting Test of executive cognition and explained 4% of variance (P = 0.001) in frequency of perseverative errors. Consistent with other evidence that dopamine enhances prefrontal neuronal function, the load of the low-activity Met allele predicted enhanced cognitive performance. We then examined the effect of COMT genotype on prefrontal physiology during a working memory task in three separate subgroups (n = 11-16) assayed with functional MRI. Met allele load consistently predicted a more efficient physiological response in prefrontal cortex. Finally, in a family-based association analysis of 104 trios, we found a significant increase in transmission of the Val allele to the schizophrenic offspring. These data suggest that the COMT Val allele, because it increases prefrontal dopamine catabolism, impairs prefrontal cognition and physiology, and by this mechanism slightly increases risk for schizophrenia.

2,402 citations

Journal ArticleDOI
TL;DR: The identification of a gentic marker associated with significant alterations in enzyme activity will facilitate the analysis of a possible role for the COMT gene in neuropsychiatric conditions in which abnormalities in catecholamine neurotransmission are believed to occur.
Abstract: Catechol-O-methyltransferase (COMT) inactivates catecholamines and catechol drugs such as L-DOPA. A common genetic polymorphism in humans is associated with a three-to-four-fold variation in COMT enzyme activity and is also associated with individual variation in COMT thermal instability. We now show that this is due to G-->A transition at codon 158 of the COMT gene that results in a valine to methionine substitution. The two alleles can be identified with a PCR-based restriction fragment length polymorphism analysis using the restriction enzyme Nla III. The identification of a gentic marker associated with significant alterations in enzyme activity will facilitate the analysis of a possible role for the COMT gene in neuropsychiatric conditions in which abnormalities in catecholamine neurotransmission are believed to occur, including mood disorders, schizophrenia, obsessive compulsive disorder, alcohol and substance abuse, and attention deficit hyperactivity disorder. In addition, this polymorphism may have pharmacogenetic significance in that it will help make it possible to identify patients who display altered metabolism of catechol drugs.

1,748 citations

Journal ArticleDOI
TL;DR: Val is a predominant factor that determines higher COMT activity in the prefrontal cortex, which presumably leads to lower synaptic dopamine levels and relatively deleterious prefrontal function.
Abstract: Catechol-O-methyltransferase (COMT) is a key enzyme in the elimination of dopamine in the prefrontal cortex of the human brain. Genetic variation in the COMT gene (MIM 116790) has been associated with altered prefrontal cortex function and higher risk for schizophrenia, but the specific alleles and their functional implications have been controversial. We analyzed the effects of several single-nucleotide polymorphisms (SNPs) within COMT on mRNA expression levels (using reverse-transcriptase polymerase chain reaction analysis), protein levels (using Western blot analysis), and enzyme activity (using catechol methylation) in a large sample (n = 108) of postmortem human prefrontal cortex tissue, which predominantly expresses the -membrane-bound isoform. A common coding SNP, Val158Met (rs4680), significantly affected protein abundance and enzyme activity but not mRNA expression levels, suggesting that differences in protein integrity account for the difference in enzyme activity between alleles. A SNP in intron 1 (rs737865) and a SNP in the 3′ flanking region (rs165599)—both of which have been reported to contribute to allelic expression differences and to be associated with schizophrenia as part of a haplotype with Val—had no effect on mRNA expression levels, protein immunoreactivity, or enzyme activity. In lymphocytes from 47 subjects, we confirmed a similar effect on enzyme activity in samples with the Val/Met genotype but no effect in samples with the intron 1 or 3′ SNPs. Separate analyses revealed that the subject's sex, as well as the presence of a SNP in the P2 promoter region (rs2097603), had small effects on COMT enzyme activity. Using site-directed mutagenesis of mouse COMT cDNA, followed by in vitro translation, we found that the conversion of Leu at the homologous position into Met or Val progressively and significantly diminished enzyme activity. Thus, although we cannot exclude a more complex genetic basis for functional effects of COMT, Val is a predominant factor that determines higher COMT activity in the prefrontal cortex, which presumably leads to lower synaptic dopamine levels and relatively deleterious prefrontal function.

1,596 citations

Journal ArticleDOI
TL;DR: Three genetic variants of the gene encoding catecholamine-O-methyltransferase determine COMT activity in humans that inversely correlates with pain sensitivity and the risk of developing TMD.
Abstract: Pain sensitivity varies substantially among humans. A significant part of the human population develops chronic pain conditions that are characterized by heightened pain sensitivity. We identified three genetic variants (haplotypes) of the gene encoding catecholamine-O-methyltransferase (COMT) that we designated as low pain sensitivity (LPS), average pain sensitivity (APS) and high pain sensitivity (HPS). We show that these haplotypes encompass 96% of the human population, and five combinations of these haplotypes are strongly associated (P 5 0.0004) with variation in the sensitivity to experimental pain. The presence of even a single LPS haplotype diminishes, by as much as 2.3 times, the risk of developing myogenous temporomandibular joint disorder (TMD), a common musculoskeletal pain condition. The LPS haplotype produces much higher levels of COMT enzymatic activity when compared with the APS or HPS haplotypes. Inhibition of COMT in the rat results in a profound increase in pain sensitivity. Thus, COMT activity substantially influences pain sensitivity, and the three major haplotypes determine COMT activity in humans that inversely correlates with pain sensitivity and the risk of developing TMD.

1,209 citations

Journal ArticleDOI
TL;DR: Comparison of velocity parameters, substrate selectivity, and regioselectivity of the methylation of both enzyme forms, and a revised mechanism for the reaction cycle are discussed.
Abstract: Human soluble (S) and membrane-bound (MB) catechol O-methyltransferase (COMT, EC 2.1.1.6) enzymes have been expressed at sufficiently high levels in Escherichia coli and in baculovirus-infected insect cells to allow kinetic characterization of the enzyme forms. The use of tight-binding inhibitors such as entacapone enabled the estimation of actual enzyme concentrations and, thereby, comparison of velocity parameters, substrate selectivity, and regioselectivity of the methylation of both enzyme forms. Kinetics of the methylation reaction of dopamine, (-)-noradrenaline, L-dopa, and 3,4-dihydroxybenzoic acid was studied in detail. Here, the catalytic number (Vmax) of S-COMT was somewhat higher than that of MB-COMT for all four substrates. The Km values varied considerably, depending on both substrate and enzyme form. S-COMT showed about 15 times higher Km values for catecholamines than MB-COMT. The distinctive difference between the enzyme forms was also the higher affinity of MB-COMT for the coenzyme S-adenosyl-L-methionine (AdoMet). The average dissociation constants Ks were 3.4 and 20.2 microM for MB-COMT and S-COMT, respectively. Comparison between the kinetic results and the atomic structure of S-COMT is presented, and a revised mechanism for the reaction cycle is discussed. Two recently published human COMT cDNA sequences differed in the position of S-COMT amino acid 108, the residue being either Val-108 [Lundstrom et al. (1991) DNA Cell. Biol. 10, 181-189] or Met-108 [Bertocci et al. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 1416-1420].(ABSTRACT TRUNCATED AT 250 WORDS)

1,155 citations


Network Information
Related Topics (5)
Dopamine
45.7K papers, 2.2M citations
88% related
Agonist
53.7K papers, 1.9M citations
83% related
Prefrontal cortex
24K papers, 1.9M citations
82% related
Glutamate receptor
33.5K papers, 1.8M citations
81% related
Hippocampus
34.9K papers, 1.9M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202338
202265
202129
202032
201931
201834