scispace - formally typeset
Search or ask a question
Topic

Causal inference

About: Causal inference is a research topic. Over the lifetime, 6733 publications have been published within this topic receiving 304534 citations.


Papers
More filters
MonographDOI
TL;DR: The art and science of cause and effect have been studied in the social sciences for a long time as mentioned in this paper, see, e.g., the theory of inferred causation, causal diagrams and the identification of causal effects.
Abstract: 1. Introduction to probabilities, graphs, and causal models 2. A theory of inferred causation 3. Causal diagrams and the identification of causal effects 4. Actions, plans, and direct effects 5. Causality and structural models in the social sciences 6. Simpson's paradox, confounding, and collapsibility 7. Structural and counterfactual models 8. Imperfect experiments: bounds and counterfactuals 9. Probability of causation: interpretation and identification Epilogue: the art and science of cause and effect.

12,606 citations

Book
01 Jan 2001
TL;DR: In this article, the authors present experiments and generalized Causal inference methods for single and multiple studies, using both control groups and pretest observations on the outcome of the experiment, and a critical assessment of their assumptions.
Abstract: 1. Experiments and Generalized Causal Inference 2. Statistical Conclusion Validity and Internal Validity 3. Construct Validity and External Validity 4. Quasi-Experimental Designs That Either Lack a Control Group or Lack Pretest Observations on the Outcome 5. Quasi-Experimental Designs That Use Both Control Groups and Pretests 6. Quasi-Experimentation: Interrupted Time Series Designs 7. Regression Discontinuity Designs 8. Randomized Experiments: Rationale, Designs, and Conditions Conducive to Doing Them 9. Practical Problems 1: Ethics, Participant Recruitment, and Random Assignment 10. Practical Problems 2: Treatment Implementation and Attrition 11. Generalized Causal Inference: A Grounded Theory 12. Generalized Causal Inference: Methods for Single Studies 13. Generalized Causal Inference: Methods for Multiple Studies 14. A Critical Assessment of Our Assumptions

12,215 citations

Journal ArticleDOI
TL;DR: A discussion of matching, randomization, random sampling, and other methods of controlling extraneous variation is presented in this paper, where the objective is to specify the benefits of randomization in estimating causal effects of treatments.
Abstract: A discussion of matching, randomization, random sampling, and other methods of controlling extraneous variation is presented. The objective is to specify the benefits of randomization in estimating causal effects of treatments. The basic conclusion is that randomization should be employed whenever possible but that the use of carefully controlled nonrandomized data to estimate causal effects is a reasonable and necessary procedure in many cases. Recent psychological and educational literature has included extensive criticism of the use of nonrandomized studies to estimate causal effects of treatments (e.g., Campbell & Erlebacher, 1970). The implication in much of this literature is that only properly randomized experiments can lead to useful estimates of causal effects. If taken as applying to all fields of study, this position is untenable. Since the extensive use of randomized experiments is limited to the last half century,8 and in fact is not used in much scientific investigation today,4 one is led to the conclusion that most scientific "truths" have been established without using randomized experiments. In addition, most of us successfully determine the causal effects of many of our everyday actions, even interpersonal behaviors, without the benefit of randomization. Even if the position that causal effects of treatments can only be well established from randomized experiments is taken as applying only to the social sciences in which

8,377 citations

BookDOI
TL;DR: For instance, King, Keohane, Verba, and Verba as mentioned in this paper have developed a unified approach to valid descriptive and causal inference in qualitative research, where numerical measurement is either impossible or undesirable.
Abstract: While heated arguments between practitioners of qualitative and quantitative research have begun to test the very integrity of the social sciences, Gary King, Robert Keohane, and Sidney Verba have produced a farsighted and timely book that promises to sharpen and strengthen a wide range of research performed in this field. These leading scholars, each representing diverse academic traditions, have developed a unified approach to valid descriptive and causal inference in qualitative research, where numerical measurement is either impossible or undesirable. Their book demonstrates that the same logic of inference underlies both good quantitative and good qualitative research designs, and their approach applies equally to each. Providing precepts intended to stimulate and discipline thought, the authors explore issues related to framing research questions, measuring the accuracy of data and uncertainty of empirical inferences, discovering causal effects, and generally improving qualitative research. Among the specific topics they address are interpretation and inference, comparative case studies, constructing causal theories, dependent and explanatory variables, the limits of random selection, selection bias, and errors in measurement. Mathematical notation is occasionally used to clarify concepts, but no prior knowledge of mathematics or statistics is assumed. The unified logic of inference that this book explicates will be enormously useful to qualitative researchers of all traditions and substantive fields.

6,233 citations

Journal ArticleDOI
TL;DR: In this article, the authors use a particular model for causal inference (Holland and Rubin 1983; Rubin 1974) to critique the discussions of other writers on causation and causal inference.
Abstract: Problems involving causal inference have dogged at the heels of statistics since its earliest days. Correlation does not imply causation, and yet causal conclusions drawn from a carefully designed experiment are often valid. What can a statistical model say about causation? This question is addressed by using a particular model for causal inference (Holland and Rubin 1983; Rubin 1974) to critique the discussions of other writers on causation and causal inference. These include selected philosophers, medical researchers, statisticians, econometricians, and proponents of causal modeling.

4,845 citations


Network Information
Related Topics (5)
Inference
36.8K papers, 1.3M citations
84% related
Statistical hypothesis testing
19.5K papers, 1M citations
81% related
Linear model
19K papers, 1M citations
80% related
Regression analysis
31K papers, 1.7M citations
78% related
Estimator
97.3K papers, 2.6M citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20243
2023702
20221,248
2021848
2020809
2019657