scispace - formally typeset
Search or ask a question

Showing papers on "Cell culture published in 1992"


Journal ArticleDOI
TL;DR: Control elements of the tetracycline-resistance operon encoded in Tn10 of Escherichia coli have been utilized to establish a highly efficient regulatory system in mammalian cells that is suitable for creation of "on/off" situations for such genes in a reversible way.
Abstract: Control elements of the tetracycline-resistance operon encoded in Tn10 of Escherichia coli have been utilized to establish a highly efficient regulatory system in mammalian cells. By fusing the tet repressor with the activating domain of virion protein 16 of herpes simplex virus, a tetracycline-controlled transactivator (tTA) was generated that is constitutively expressed in HeLa cells. This transactivator stimulates transcription from a minimal promoter sequence derived from the human cytomegalovirus promoter IE combined with tet operator sequences. Upon integration of a luciferase gene controlled by a tTA-dependent promoter into a tTA-producing HeLa cell line, high levels of luciferase expression were monitored. These activities are sensitive to tetracycline. Depending on the concentration of the antibiotic in the culture medium (0-1 microgram/ml), the luciferase activity can be regulated over up to five orders of magnitude. Thus, the system not only allows differential control of the activity of an individual gene in mammalian cells but also is suitable for creation of "on/off" situations for such genes in a reversible way.

5,322 citations


Journal ArticleDOI
03 Apr 1992-Cell
TL;DR: It is demonstrated that deregulated c-myc expression induces apoptosis in cells growth arrested by a variety of means and at various points in the cell cycle.

3,047 citations


Journal ArticleDOI
TL;DR: The results suggest that activation of the PD‐1 gene may be involved in the classical type of programmed cell death.
Abstract: The classical type of programmed cell death is characterized by its dependence on de novo RNA and protein synthesis and morphological features of apoptosis. We confirmed that stimulated 2B4.11 (a murine T-cell hybridoma) and interleukin-3 (IL-3)-deprived LyD9 (a murine haematopoietic progenitor cell line) died by the classical type of programmed cell death. Assuming that common biochemical pathways might be involved in the deaths of 2B4.11 and LyD9, we isolated the PD-1 gene, a novel member of the immunoglobulin gene superfamily, by using subtractive hybridization technique. The predicted PD-1 protein has a variant form of the consensus sequence found in cytoplasmic tails of signal transducing polypeptides associated with immune recognition receptors. The PD-1 gene was activated in both stimulated 2B4.11 and IL-3-deprived LyD9 cells, but not in other death-induced cell lines that did not show the characteristic features of the classical programmed cell death. Expression of the PD-1 mRNA in mouse was restricted to the thymus and increased when thymocyte death was augmented by in vivo injection of anti-CD3 antibody. These results suggest that activation of the PD-1 gene may be involved in the classical type of programmed cell death.

2,616 citations


Journal ArticleDOI
TL;DR: The murine monoclonal antibody mumAb4D5, directed against human epidermal growth factor receptor 2 (p 185HER2), specifically inhibits proliferation of human tumor cells overexpressing p185HER2, but the efficacy of mumAb 4D5 in human cancer therapy is likely to be limited by a human anti-mouse antibody response and lack of effector functions.
Abstract: The murine monoclonal antibody mumAb4D5, directed against human epidermal growth factor receptor 2 (p185HER2), specifically inhibits proliferation of human tumor cells overexpressing p185HER2. However, the efficacy of mumAb4D5 in human cancer therapy is likely to be limited by a human anti-mouse antibody response and lack of effector functions. A "humanized" antibody, humAb4D5-1, containing only the antigen binding loops from mumAb4D5 and human variable region framework residues plus IgG1 constant domains was constructed. Light- and heavy-chain variable regions were simultaneously humanized in one step by "gene conversion mutagenesis" using 311-mer and 361-mer preassembled oligonucleotides, respectively. The humAb4D5-1 variant does not block the proliferation of human breast carcinoma SK-BR-3 cells, which overexpress p185HER2, despite tight antigen binding (Kd = 25 nM). One of seven additional humanized variants designed by molecular modeling (humAb4D5-8) binds the p185HER2 antigen 250-fold and 3-fold more tightly than humAb4D5-1 and mumAb4D5, respectively. In addition, humAb4D5-8 has potency comparable to the murine antibody in blocking SK-BR-3 cell proliferation. Furthermore, humAb4D5-8 is much more efficient in supporting antibody-dependent cellular cytotoxicity against SK-BR-3 cells than mumAb4D5, but it does not efficiently kill WI-38 cells, which express p185HER2 at lower levels.

2,604 citations


Journal ArticleDOI
TL;DR: The present review describes several methods to characterize and differentiate between two different mechanisms of cell death, apoptosis and necrosis, applied to studies of apoptosis triggered in the human leukemic HL-60 cell line by DNA topoisomerase I or II inhibitors, and in rat thymocytes by either topoisomersase inhibitors or prednisolone.
Abstract: The present review describes several methods to characterize and differentiate between two different mechanisms of cell death, apoptosis and necrosis. Most of these methods were applied to studies of apoptosis triggered in the human leukemic HL-60 cell line by DNA topoisomerase I or II inhibitors, and in rat thymocytes by either topoisomerase inhibitors or prednisolone. In most cases, apoptosis was selective to cells in a particular phase of the cell cycle: only S-phase HL-60 cells and G0 thymocytes were mainly affected. Necrosis was induced by excessively high concentrations of these drugs. The following cell features were found useful to characterize the mode of cell death: a) Activation of an endonuclease in apoptocic cells resulted in extraction of the low molecular weight DNA following cell permeabilization, which, in turn, led to their decreased stainability with DNA-specific fluorochromes. Measurements of DNA content made it possible to identify apoptotic cells and to recognize the cell cycle phase specificity of the apoptotic process. b) Plasma membrane integrity, which is lost in necrotic but not apoptotic cells, was probed by the exclusion of propidium iodide (PI). The combination of PI followed by Hoechst 33342 proved to be an excellent probe to distinguish live, necrotic, early- and late-apoptotic cells. c) Mitochondrial transmembrane potential, assayed by retention of rhodamine 123 was preserved in apoptotic but not necrotic cells. d) The ATP-dependent lysosomal proton pump, tested by the supravital uptake of acridine orange (AO) was also preserved in apoptotic but not necrotic cells. e) Bivariate analysis of cells stained for DNA and protein revealed markedly diminished protein content in apoptotic cells, most likely due to activation of endogenous proteases. Necrotic cells, having leaky membranes, had minimal protein content. f) Staining of RNA allowed for the discrimination of G0 from G1 cells and thus made it possible to reveal that apoptosis was selective to G0 thymocytes. g) The decrease in forward light scatter, paralleled either by no change (HL-60 cells) or an increase (thymocytes) of right angle scatter, were early changes during apoptosis. h) The sensitivity of DNA in situ to denaturation, was increased in apoptotic and necrotic cells. This feature, probed by staining with AO at low pH, provided a sensitive and early assay to discriminate between live, apoptotic and necrotic cells, and to evaluate the cell cycle phase specificity of these processes. i) The in situ nick translation assay employing labeled triphosphonucleotides can be used to reveal DNA strand breaks, to detect the very early stages of apoptosis.(ABSTRACT TRUNCATED AT 400 WORDS)

1,953 citations


Journal ArticleDOI
24 Sep 1992-Nature
TL;DR: The unexpected identification of the 4K (Mr 4,000) Aβ and a truncated form of Aβ in media from cultures of primary cells and untransfected and β-APP-transfected cell lines grown under normal conditions provide the basis for using simple cell culture systems to identify drugs that block the formation or release of A β, the primary protein constituent of the senile plaques of Alzheimer's disease.
Abstract: Alzheimer's disease is characterized by the extracellular deposition in the brain and its blood vessels of insoluble aggregates of the amyloid beta-peptide (A beta), a fragment, of about 40 amino acids in length, of the integral membrane protein beta-amyloid precursor protein (beta-APP). The mechanism of extracellular accumulation of A beta in brain is unknown and no simple in vitro or in vivo model systems that produce extracellular A beta have been described. We report here the unexpected identification of the 4K (M(r) 4,000) A beta and a truncated form of A beta (approximately 3K) in media from cultures of primary cells and untransfected and beta-APP-transfected cell lines grown under normal conditions. These peptides were immunoprecipitated readily from culture medium by A beta-specific antibodies and their identities confirmed by sequencing. The concept that pathological processes are responsible for the production of A beta must not be reassessed in light of the observation that A beta is produced in soluble form in vitro and in vivo during normal cellular metabolism. Further, these findings provide the basis for using simple cell culture systems to identify drugs that block the formation or release of A beta, the primary protein constituent of the senile plaques of Alzheimer's disease.

1,943 citations


Journal ArticleDOI
24 Sep 1992-Nature
TL;DR: It is demonstrated that Aβ is produced and released both in vivo and in vitro, and new opportunities for developing diagnostic tests for Alzheimer's disease and therapeutic strategies aimed at reducing the cerebral deposition of Aβ are offered.
Abstract: CEREBRAL deposition of the β-amyloid peptide (Aβ) is an invariant feature of Alzheimer's disease. Since the original isola-tion and characterization of αβ (ref. 1) and the subsequent cloning of its precursor protein2–5, no direct evidence for the actual production of discrete Aβ has been reported6–11. Here we investigate whether Aβ is present in human biological fluids using antibodies specific for an epitope within Aβ that spans the site of normal constitutive cleavage12,13. These antibodies were used to construct a sandwich type enzyme-linked immunosorbent assay that detects Aβ in cerebrospinal fluid, plasma and conditioned medium of human mixed-brain cells grown in vitro (see also ref. 14). By affinity chromatography, we have purified and sequenced Aβ and a novel Aβ fragment from human cerebrospinal fluid and conditioned medium of human mixed-brain cell cultures. These findings demonstrate that Aβ is produced and released both in vivo and in vitro. These observations offer new opportunities for developing diagnostic tests for Alzheimer's disease and therapeutic strategies aimed at reducing the cerebral deposition of Aβ.

1,870 citations


Journal ArticleDOI
TL;DR: High-level induction of the hCox-2 transcript in mesenchymal-derived inflammatory cells suggests a role in inflammatory conditions and demonstrates that the Cox enzyme is encoded by at least two genes that are expressed and differentially regulated in a variety of cell types.
Abstract: Cyclooxygenase (Cox), also known as prostaglandin (PG) H synthase (EC 1.14.99.1), catalyzes the rate-limiting step in the formation of inflammatory PGs. A major regulatory step in PG biosynthesis is at the level of Cox: growth factors, cytokines, and tumor promoters induce Cox activity. We have cloned the second form of the Cox gene (Cox-2) from human umbilical vein endothelial cells (HUVEC). The cDNA encodes a polypeptide of 604 amino acids that is 61% identical to the previously isolated human Cox-1 polypeptide. In vitro translation of the human (h)Cox-2 transcript in rabbit reticulocyte lysates resulted in the synthesis of a 70-kDa protein that is immunoprecipitated by antiserum to ovine Cox. Expression of the hCox-2 open reading frame in Cos-7 monkey kidney cells results in the elaboration of cyclooxygenase activity. hCox-2 cDNA hybridizes to a 4.5-kilobase mRNA species in HUVEC, whereas the hCox-1 cDNA hybridizes to 3- and 5.3-kilobase species. Both Cox-1 and Cox-2 mRNAs are expressed in HUVEC, vascular smooth muscle cells, monocytes, and fibroblasts. Cox-2 mRNA was preferentially induced by phorbol 12-myristate 13-acetate and lipopolysaccharide in human endothelial cells and monocytes. Together, these data demonstrate that the Cox enzyme is encoded by at least two genes that are expressed and differentially regulated in a variety of cell types. High-level induction of the hCox-2 transcript in mesenchymal-derived inflammatory cells suggests a role in inflammatory conditions.

1,498 citations


Journal ArticleDOI
04 Sep 1992-Cell
TL;DR: It is shown that addition of bFGF to cultures in the presence of membrane-associated SF and LIF enhances the growth of PGCs and allows their continued proliferation beyond the time when they normally stop dividing in vivo.

1,299 citations


Journal ArticleDOI
TL;DR: The transfected human dermal microvascular endothelial cells (HMEC) with a PBR-322-based plasmid containing the coding region for the simian virus 40 A gene product, large T antigen, and succeeded in immortalizing them, making HMEC-1 the first immortalized human microv vascular endothelial cell line that retains the morphologic, phenotypic, and functional characteristics of normal human microfiltration cells.

1,285 citations


Journal ArticleDOI
Keith A. Houck1, David W. Leung1, A M Rowland1, Jane Winer1, Napoleone Ferrara1 
TL;DR: The bioavailability of V EGF may be regulated at the genetic level by alternative splicing that determines whether VEGF will be soluble or incorporated into a biological reservoir and also through proteolysis following plasminogen activation.

Journal ArticleDOI
TL;DR: It is determined that most EBV-transformed human B lymphoblastoid cell lines constitutively produce low levels of the p70 heterodimer and an excess of the free p40 chain, whereas Burkitt lymphoma-derived, T, myeloid, and many solid tumor-derived cell lines produce neither.
Abstract: Natural killer cell stimulatory factor (NKSF), or interleukin 12 (IL-12), is a 70-kD heterodimeric cytokine composed of two covalently linked chains, p40 and p35. NKSF/IL-12 has multiple effects on T and NK cells and was originally identified and purified from the supernatant fluid of Epstein-Barr virus (EBV)-transformed human B lymphoblastoid cell lines. We have produced a panel of monoclonal antibodies against both chains of NKSF/IL-12. Some of these antibodies have neutralizing activity, and several combinations of them have been used to establish sensitive radioimmunoassays detecting the free p40 chain, the free p35 chain, or the p70 heterodimer. Using these reagents, we have determined that most EBV-transformed human B lymphoblastoid cell lines constitutively produce low levels of the p70 heterodimer and an excess of the free p40 chain, whereas Burkitt lymphoma-derived, T, myeloid, and many solid tumor-derived cell lines produce neither. Production of both p40 and p70 is increased several-fold upon stimulation of the EBV-transformed cell lines with phorbol diesters. The ability of supernatant fluids from unstimulated and phorbol diester-stimulated cell lines to induce interferon gamma (IFN-gamma) production from T and NK cells, one of the effects of NKSF/IL-12, parallels the levels of production of the p70 heterodimer, known to be the biologically active form of NKSF/IL-12. Staphylococcus aureus Cowan I strain (SAC) and other stimuli induce accumulation of p40 mRNA and production of both p40 and p70 by peripheral blood mononuclear cells (PBMC). The producer cells appear to include both adherent cells and nonadherent lymphocytes, possibly B cells. The supernatant fluids from SAC-stimulated PBMC mediate the typical functions of NKSF/IL-12 (i.e., IFN-gamma induction, mitogenic effects on T/NK blasts, enhancement of NK cell cytotoxicity) at concentrations of p70 similar to those at which recombinant NKSF/IL-12 mediates the same functions. Moreover, these activities are significantly inhibited by anti-NKSF/IL-12 antibodies. The neutralizing anti-NKSF/IL-12 antibodies also inhibit 85% of the IFN-gamma production in response to SAC, an NKSF/IL-12 inducer, and approximately 50% of the IFN-gamma production in response to non-NKSF/IL-12-inducers such as IL-2, phytohemagglutinin, and anti-CD3 antibodies. These results indicate that induced or constitutively produced NKSF/IL-12 has a major role in facilitating IFN-gamma production by peripheral blood lymphocytes.(ABSTRACT TRUNCATED AT 400 WORDS)

Book ChapterDOI
TL;DR: The preparation of protoplasts from TBY-2 cells, from which the isolation of organelles is easy, has been established and using the synchrony system, the change in the cell cycle progression of TBY -2 cells successfully followed thechange in cytoskeletons.
Abstract: Publisher Summary This chapter highlights tobacco BY-2 (TBY-2) cell line. TBY-2 derived from the seedlings of N. tabacum L. cv. Bright Yellow 2 grows fast and multiplies 80- to 100-fold in 1 week. After the stationary phase, cells of TBY-2 are transferred to a medium containing aphidicolin for 24 hr and then released from treatment; high synchrony is obtained starting from the S phase. TBY-2 cells are propagated in the modified medium of Linsmaier and Skoog, in which KH2PO4 and thiamine HCl are increased to 370 and 1 mg/liter, respectively, and sucrose and 2,4-D are supplemented to 3% and 0.2 mg/liter, respectively. The preparation of protoplasts from TBY-2 cells, from which the isolation of organelles is easy, has been established. Using the synchrony system, the change in the cell cycle progression of TBY-2 cells successfully followed the change in cytoskeletons. Biochemical and molecular biological studies can also be done on TBY-2 cells, as mass culture of this material is readily feasible.

Journal ArticleDOI
TL;DR: New insulin-secreting cell lines established from cells isolated from an x-ray-induced rat transplantable insulinoma indicate that INS-1 cells have remained stable and retain a high degree of differentiation which should make them a suitable model for studying various aspects of beta-cell function.
Abstract: New insulin-secreting cell lines (INS-1 and INS-2) were established from cells isolated from an x-ray-induced rat transplantable insulinoma. The continuous growth of these cells was found to be dependent on the reducing agent 2-mercaptoethanol. Removal of this thiol compound caused a 15-fold drop in total cellular glutathione levels. These cells proliferated slowly (population doubling time about 100 h) and, in general, showed morphological characteristics typical of native beta-cells. Most cells stained positive for insulin and did not react with antibodies against the other islet hormones. The content of immunoreactive insulin was about 8 micrograms/10(6) cells, corresponding to 20% of the native beta-cell content. These cells synthesized both proinsulin I and II and displayed conversion rates of the two precursor hormones similar to those observed in rat islets. However, glucose failed to stimulate the rate of proinsulin biosynthesis. In static incubations, glucose stimulated insulin secretion from floating cell clusters or from attached cells. Under perifusion conditions, 10 mM but not 1 mM glucose enhanced secretion 2.2-fold. In the presence of forskolin and 3-isobutyl-1-methylxanthine, increase of glucose concentration from 2.8-20 mM caused a 4-fold enhancement of the rate of secretion. Glucose also depolarized INS-1 cells and raised the concentration of cytosolic Ca2+. This suggests that glucose is still capable of eliciting part of the ionic events at the plasma membrane, which leads to insulin secretion. The structural and functional characteristics of INS-1 cells remained unchanged over a period of 2 yr (about 80 passages). Although INS-2 cells have not been fully characterized, their insulin content was similar to that of INS-1 cells and they also remain partially sensitive to glucose as a secretagogue. INS-1 cells retain beta-cell surface antigens, as revealed by reactivity with the antigangloside monoclonal antibodies R2D6 and A2B5. These findings indicate that INS-1 cells have remained stable and retain a high degree of differentiation which should make them a suitable model for studying various aspects of beta-cell function.

Journal Article
TL;DR: The hypothesis that microglia are the source of a neurocytotoxic-free radical is supported, and light is shed on an additional mechanism of immune-mediated brain injury.
Abstract: Activated microglial have been proposed to play a pathogenetic role in immune-mediated neurodegenerative diseases. To test this hypothesis, purified murine neonatal microglial were cocultured with neuronal cells derived from fetal brain. Activation with IFN-gamma and LPS of these cocultures brought about a sharp decrease in uptake of gamma-amino butyric acid and a marked reduction in neuronal cell survival. These effects varied with the density of microglia, the concentrations of the activation signals (IFN-gamma and LPS), and the duration of coculture. Inasmuch as addition of NG-monomethyl-L-arginine blocked these effects, a L-arginine-dependent neurocytotoxic mechanism was implicated. Abundant nitrite, a metabolite of the free radical nitric oxide (NO) derived from L-arginine, was detected in activated microglial/neuronal cell cocultures and in purified microglial cell cultures but not in purified astrocyte or neuronal cell cultures, suggesting that microglial were the principal source of the NO. These findings support the hypothesis that microglia are the source of a neurocytotoxic-free radical, and shed light on an additional mechanism of immune-mediated brain injury.

Journal ArticleDOI
TL;DR: It is shown that a reconstituted basement membrane (BM) can be used to culture all normal human breast epithelial cells and a subset of human breast carcinoma cells and it is proposed that the ability to sense BM appropriately and to form three-dimensional organotypic structures may be the function of a class of "suppressor" genes that are lost as cells become malignant.
Abstract: Normal human breast epithelial cells show a high degree of phenotypic plasticity in monolayer culture and express many traits that otherwise characterize tumor cells in vivo. Paradoxically, primary human breast carcinoma cells are difficult to establish in culture: most outgrowths arise from the normal tissue surrounding the tumor. These characteristics have posed major obstacles to the establishment of simple reliable criteria for mammary epithelial transformation in culture. In the present study, we show that a reconstituted basement membrane (BM) can be used to culture all normal human breast epithelial cells and a subset of human breast carcinoma cells. The two cell types can be readily distinguished by virtue of the ability of normal cells to reexpress a structurally and functionally differentiated phenotype within BM. Twelve specimens of normal breast tissue and 2 normal breast epithelial cell lines (total 14 samples) embedded in BM as single cells were able to form multicellular spherical colonies with a final size close to that of true acini in situ. Sections of mature spheres revealed a central lumen surrounded by polarized luminal epithelial cells expressing keratins 18 and 19 and sialomucin at the apical membrane. Significantly, two-thirds of normal spheres deposited a visible endogenous type IV collagen-containing BM even though they were in contact with exogenously provided BM. Growth was arrested completely within the same time period. In contrast, none of 6 carcinoma cell lines or 2 cultures of carcinoma from fresh samples (total 8 samples) responded to BM by growth regulation, lumen formation, correct polarity, or deposition of endogenous BM. These findings may provide the basis of a rapid assay for discriminating normal human breast epithelial cells from their malignant counterparts. Furthermore, we propose that the ability to sense BM appropriately and to form three-dimensional organotypic structures may be the function of a class of "suppressor" genes that are lost as cells become malignant.

Journal ArticleDOI
22 May 1992-Science
TL;DR: Several complementary DNA clones encoding related HRGs were identified, all of which are similar to proteins in the epidermal growth factor family, and heregulin transcripts were identified in several normal tissues and cancer cell lines.
Abstract: The proto-oncogene designated erbB2 or HER2 encodes a 185-kilodalton transmembrane tyrosine kinase (p185erbB2), whose overexpression has been correlated with a poor prognosis in several human malignancies. A 45-kilodalton protein heregulin-alpha (HRG-alpha) that specifically induced phosphorylation of p185erbB2 was purified from the conditioned medium of a human breast tumor cell line. Several complementary DNA clones encoding related HRGs were identified, all of which are similar to proteins in the epidermal growth factor family. Scatchard analysis of the binding of recombinant HRG to a breast tumor cell line expressing p185erbB2 showed a single high affinity binding site [dissociation constant (Kd) = 105 +/- 15 picomolar]. Heregulin transcripts were identified in several normal tissues and cancer cell lines. The HRGs may represent the natural ligands for p185erbB2.

Journal ArticleDOI
TL;DR: A HeLa cell line is constructed that both expresses high levels of CD4 and contains a single integrated copy of a beta-galactosidase gene that is under the control of a truncated human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR).
Abstract: We have constructed a HeLa cell line that both expresses high levels of CD4 and contains a single integrated copy of a beta-galactosidase gene that is under the control of a truncated human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR). This cell line, called CD4-LTR/beta-gal, can be used to determine quantitatively the titer of laboratory-adapted HIV strains, and the method used to do so is as sensitive as the determination of viral titers in a T-cell line by end point dilution. Using this cell line as a titer system, we calculated that HIV-1 stocks contain only one infectious particle per 3,500 to 12,000 virions. Virus derived from a molecular clone of a macrophagetropic provirus will not infect this cell line. We have also cocultivated peripheral blood lymphocyte cultures from HIV-infected individuals with the CD4-LTR/beta-gal indicator cells. In a majority of primary isolates (five of eight), including isolates from asymptomatic patients, rare virus-infected cells that can activate the beta-galactosidase gene are present.

Journal ArticleDOI
08 Oct 1992-Nature
TL;DR: This work reports a further factor that stimulates PGC proliferation in vitro, basic fibroblast growth factor (bFGF), which, in the presence of steel factor and leukaemia inhibitory factor, stimulates long-term proliferation of PGCs, leading to the derivation of large colonies of cells.
Abstract: Primordial germ cells (PGCs) are first identifiable as a population of about eight alkaline phosphatase-positive cells in the 70 days postcoitum mouse embryo During the next 6 days of development they proliferate to give rise to the 25,000 cells that will establish the meiotic population Steel factor is required for PGC survival both in vivo and in vitro and together with leukaemia inhibitory factor stimulates PGC proliferation in vitro In feeder-dependent culture, PGCs will proliferate for up to 7 days, but their numbers eventually decline and their proliferative capacity is only a fraction of that seen in vivo Here we report a further factor that stimulates PGC proliferation in vitro, basic fibroblast growth factor (bFGF) Furthermore, bFGF, in the presence of steel factor and leukaemia inhibitory factor, stimulates long-term proliferation of PGCs, leading to the derivation of large colonies of cells These embryonic germ cells resemble embryonic stem cells, pluripotent cells derived from preimplantation embryos, or feeder-dependent embryonal carcinoma cells, pluripotent stem cells of PGC-derived tumours (teratomas and teratocarcinomas) To our knowledge, these results provide the first system for long-term culture of PGCs

Journal ArticleDOI
TL;DR: In this paper, exposure of human ovarian tumor cell lines to cisplatin led to development of cell lines that exhibited increasing degrees of drug resistance, which were closely correlated with increase of the levels of cellular glutathione.
Abstract: Exposure of human ovarian tumor cell lines to cisplatin led to development of cell lines that exhibited increasing degrees of drug resistance, which were closely correlated with increase of the levels of cellular glutathione. Cell lines were obtained that showed 30- to 1000-fold increases in resistance; these cells also had strikingly increased (13- to 50-fold) levels of glutathione as compared with the drug-sensitive cells of origin. These levels of resistance to cisplatin and the cellular glutathione levels are substantially greater than previously reported. Very high cisplatin resistance was associated with enhanced expression of mRNAs for gamma-glutamylcysteine synthetase and gamma-glutamyl transpeptidase; immunoblots showed increase of gamma-glutamylcysteine synthetase but not of glutathione synthetase. Glutathione S-transferase activity was unaffected, as determined with chlorodinitrobenzene as a substrate. These studies suggest the potential value of examining regulation of glutathione synthesis as an indicator of clinical prognosis. The highly resistant cell lines are proving useful for studying the multiple mechanisms by which tumor cells acquire drug- and radiation-resistance.

Journal ArticleDOI
TL;DR: Examination at both the light and electron microscopic level revealed that cells expressing wild-type p53 developed morphological features of apoptosis, suggesting that wild- type p53 could play a critical role in the terminal differentiation program of colonic epithelial cells.
Abstract: A wild-type p53 gene under control of the metallothionein MT-1 promoter was stably transfected into human colon tumor-derived cell line EB. Repeated inductions of the metallothionein wild-type p53 gene with zinc chloride results in progressive detachment of wild-type p53 cells grown on culture dishes. Examination at both the light and electron microscopic level revealed that cells expressing wild-type p53 developed morphological features of apoptosis. DNA from both attached and detached cells was degraded into a ladder of nucleosomal-sized fragments. Expression of wild-type p53 inhibited colony formation in soft agar and tumor formation in nude mice. Furthermore, established tumors in nude mice underwent regression if wild-type p53 expression was subsequently induced. Regressing tumors showed histological features of apoptosis. Thus, regression of these tumors was the result of apoptosis occurring in vivo. Apoptosis may be a normal part of the terminal differentiation program of colonic epithelial cells. Our results suggest that wild-type p53 could play a critical role in this process.

Journal ArticleDOI
TL;DR: These results constitute the initial demonstration at the cellular level that adrenergic stimulation leads to cyclic AMP-mediated calcium overload of the cell, with a resultant decrease in synthetic activity and/or viability.
Abstract: BACKGROUNDTo delineate the mechanism(s) of catecholamine-mediated cardiac toxicity, we exposed cultures of adult cardiac muscle cells, or cardiocytes, to a broad range of norepinephrine concentrations.METHODS AND RESULTSNorepinephrine stimulation resulted in a concentration-dependent decrease in cardiocyte viability, as demonstrated by a significant decrease in viable rod-shaped cells and a significant release of creatine kinase from cells in norepinephrine-treated cultures. Norepinephrine-mediated cell toxicity was attenuated significantly by beta-adrenoceptor blockade and mimicked by selective stimulation of the beta-adrenoceptor, whereas the effects mediated by the alpha-adrenoceptor were relatively less apparent. When norepinephrine stimulation was examined in terms of cardiocyte anabolic activity, there was a concentration-dependent decrease in the incorporation of [3H]phenylalanine and [3H]uridine into cytoplasmic protein and nuclear RNA, respectively. The decrease in cytoplasmic labeling was largel...

Journal ArticleDOI
04 Jun 1992-Nature
TL;DR: It is reported that human aminopeptidase N, a cell-surface metalloprotease on intestinal, lung and kidney epithelial cells, is a receptor for human coronavirus strainHCV-229E, but not for HCV-OC43.
Abstract: Human coronaviruses (HCV) in two serogroups represented by HCV-229E and HCV-OC43 are an important cause of upper respiratory tract infections. Here we report that human aminopeptidase N, a cell-surface metalloprotease on intestinal, lung and kidney epithelial cells, is a receptor for human coronavirus strain HCV-229E, but not for HCV-OC43. A monoclonal antibody, RBS, blocked HCV-229E virus infection of human lung fibroblasts, immunoprecipitated aminopeptidase N and inhibited its enzymatic activity. HCV-229E-resistant murine fibroblasts became susceptible after transfection with complementary DNA encoding human aminopeptidase N. By contrast, infection of human cells with HCV-OC43 was not inhibited by antibody RBS and expression of aminopeptidase N did not enhance HCV-OC43 replication in mouse cells. A mutant aminopeptidase lacking the catalytic site of the enzyme did not bind HCV-229E or RBS and did not render murine cells susceptible to HCV-229E infection, suggesting that the virus-binding site may lie at or near the active site of the human aminopeptidase molecule.

Journal ArticleDOI
J.N. Beresford1, J.H. Bennett1, C. Devlin1, P S Leboy1, Maureen Owen1 
TL;DR: In this paper, the differentiation of adipocytic and osteogenic cells was investigated in cultures of adult rat marrow stromal cells using morphological criteria, changes in expression of procollagen mRNAs, consistent with a switch from the synthesis of predominantly fibrillar (types I and III) to basement membrane (type IV) collagen, and the induction of expression of aP2, a specific marker for differentiation.
Abstract: The differentiation of adipocytic and osteogenic cells has been investigated in cultures of adult rat marrow stromal cells. Adipocytic differentiation was assessed using morphological criteria, changes in expression of procollagen mRNAs, consistent with a switch from the synthesis of predominantly fibrillar (types I and III) to basement membrane (type IV) collagen, and the induction of expression of aP2, a specific marker for differentiation of adipocytes. Osteogenic differentiation was assessed on the basis of changes in the abundance of the mRNAs for the bone/liver/kidney isozyme of alkaline phosphatase and the induction of mRNAs for bone sialoprotein and osteocalcin. In the presence of foetal calf serum and dexamethasone (10(-8) M) there was always differentiation of both adipocytic and osteogenic cells. When the steroid was present throughout primary and secondary culture the differentiation of osteogenic cells predominated. Conversely, when dexamethasone was present in secondary culture only, the differentiation of adipocytes predominated. When marrow stromal cells were cultured in the presence of dexamethasone in primary culture and dexamethasone and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3; 10(-8) M) in secondary culture, the differentiation of adipocytes was inhibited whereas the differentiation of osteogenic cells was enhanced, as assessed by an increase in expression of osteocalcin mRNA. The results, therefore, demonstrate an inverse relationship between the differentiation of adipocytic and osteogenic cells in this culture system and are consistent with the possibility that the regulation of adipogenesis and osteogenesis can occur at the level of a common precursor in vivo.

Journal ArticleDOI
01 Jan 1992-Bone
TL;DR: Three hybridoma cell lines, SH2, SH3, and SH4, were identified; these hybridomas secrete antibodies that recognize antigens on the cell surface of marrow- derived mesenchymal cells, but fail to react with marrow-derived hemopoietic cells, suggesting that the antigen recognized by these antibodies are developmentally regulated and specific for primitive or early-stage cells of the osteogenic lineage.

Journal ArticleDOI
TL;DR: Human tissue inhibitor of metalloproteinases‐1 (TIMP‐1), but not TIMP‐2, has potent growth‐promoting activity for a wide range of human and bovine cells, but TIMP-1 seems to be a new cell‐growth factor in serum and to stimulate the cells independently of its inhibitory activity.

Journal ArticleDOI
TL;DR: It is shown that sCD14 enables responses to LPS by cells that do not express CD14, suggesting that a surface anchor is not needed for the function of CD14 and implying that s CD14 must bind to additional proteins on the cell surface to associate with the cell and transduce a signal.
Abstract: CD14 is a 55-kD protein found both as a glycosylphosphatidyl inositol-linked protein on the surface of mononuclear phagocytes and as a soluble protein in the blood. CD14 on the cell membrane (mCD14) has been shown to serve as a receptor for complexes of lipopolysaccharide (LPS) with LPS binding protein, but a function for soluble CD14 (sCD14) has not been described. Here we show that sCD14 enables responses to LPS by cells that do not express CD14. We have examined induction of endothelial-leukocyte adhesion molecule 1 expression by human umbilical vein endothelial cells, interleukin 6 secretion by U373 astrocytoma cells, and cytotoxicity of bovine endothelial cells. None of these cell types express mCD14, yet all respond to LPS in a serum-dependent fashion, and all responses are completely blocked by anti-CD14 antibodies. Immunodepletion of sCD14 from serum prevents responses to LPS, and the responses are restored by addition of sCD14. These studies suggest that a surface anchor is not needed for the function of CD14 and further imply that sCD14 must bind to additional proteins on the cell surface to associate with the cell and transduce a signal. They also indicate that sCD14 may have an important role in potentiating responses to LPS in cells lacking mCD14.

Journal ArticleDOI
TL;DR: A series of mouse‐mouse neural hybrid cell lines developed by fusing the aminopterin‐sensitive neuroblastoma N18TG2 with motor neuron‐enriched embryonic day 12–14 spinal cord cells appear to model selected aspects of motor neuron development in an immortalized clonal system.
Abstract: We have developed a series of mouse-mouse neural hybrid cell lines by fusing the aminopterin-sensitive neuroblastoma N18TG2 with motor neuron-enriched embryonic day 12-14 spinal cord cells. Of 30 neuroblastoma-spinal cord (NSC) hybrids displaying a multipolar neuron-like phenotype, 10 express choline acetyltransferase, and 4 induce twitching in cocultured mouse myotubules. NSC-19, NSC-34, and their subclones express additional properties expected of motor neurons, including generation of action potentials, expression of neurofilament triplet proteins, and acetylcholine synthesis, storage, and release. In addition, NSC-34 cells induce acetylcholine receptor clusters on cocultured myotubes, and undergo a vimentin-neurofilament switch with maturation in culture, similar to that occurring in neuronal development. NSC cell lines appear to model selected aspects of motor neuron development in an immortalized clonal system.

Journal ArticleDOI
TL;DR: A simple assay based on a genetically engineered soluble form of murine FGF receptor 1 tagged with placental alkaline phosphatase showed that FGF-receptor binding has an absolute requirement for heparin and facilitated FGF dimerization, a property that may be important for receptor activation.
Abstract: Heparin is required for the binding of basic fibroblast growth factor (bFGF) to high-affinity receptors on cells deficient in cell surface heparan sulfate proteoglycan. So that this heparin requirement could be evaluated in the absence of other cell surface molecules, we designed a simple assay based on a genetically engineered soluble form of murine FGF receptor 1 (mFR1) tagged with placental alkaline phosphatase. Using this assay, we showed that FGF-receptor binding has an absolute requirement for heparin. By using a cytokine-dependent lymphoid cell line engineered to express mFR1, we also showed that FGF-induced mitogenic activity is heparin dependent. Furthermore, we tested a series of small heparin oligosaccharides of defined lengths for their abilities to support bFGF-receptor binding and biologic activity. We found that a heparin oligosaccharide with as few as eight sugar residues is sufficient to support these activities. We also demonstrated that heparin facilitates FGF dimerization, a property that may be important for receptor activation.

Journal ArticleDOI
TL;DR: In vitro evidence suggests, for the first time, a mechanistic paradigm by which estrogens might exert at least part of their antiresorptive influence on the skeleton.
Abstract: The effect of 17 beta-estradiol on interleukin-6 (IL-6) synthesis was examined in murine bone marrow-derived stromal cell lines, normal human bone-derived cells, and nontransformed osteoblast cell lines from mice and rats. In all these cell types IL-6 production was stimulated as much as 10,000-fold in response to the combination of recombinant interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF alpha). Addition of 17 beta-estradiol in the cultures exerted a dose-dependent inhibition of IL-1-, TNF-, and IL-1 + TNF-induced production of bioassayable IL-6. Testosterone and progesterone (but not 17 alpha-estradiol) also inhibited IL-6, but their effective concentrations were two orders of magnitude higher than 17 beta-estradiol. 17 beta-estradiol also decreased the levels of the IL-6 mRNA. In addition, estradiol inhibited both TNF-induced IL-6 production and osteoclast development in primary bone cell cultures derived from neonatal murine calvaria. The TNF-stimulated osteoclast development was also suppressed by a neutralizing monoclonal anti-IL-6 antibody. This in vitro evidence suggests, for the first time, a mechanistic paradigm by which estrogens might exert at least part of their antiresorptive influence on the skeleton.