scispace - formally typeset
Search or ask a question
Topic

Cell culture

About: Cell culture is a research topic. Over the lifetime, 133361 publications have been published within this topic receiving 5364150 citations. The topic is also known as: cell culture techniques.


Papers
More filters
Journal ArticleDOI
TL;DR: Results establish Cdk4 as an essential regulator of specific cell types as well as establishing its role as a regulator of insulin-deficient diabetes and pancreatic hyperplasia in mice expressing a mutant Cdk 4 that cannot bind the cell-cycle inhibitor P16INK4a.
Abstract: To ascertain the role of cyclin-dependent kinase 4 (Cdk4) in vivo, we have targeted the mouse Cdk4 locus by homologous recombination to generate two strains of mice, one that lacks Cdk4 expression and one that expresses a Cdk4 molecule with an activating mutation. Embryonic fibroblasts proliferate normally in the absence of Cdk4 but have a delayed S phase on re-entry into the cell cycle. Moreover, mice devoid of Cdk4 are viable, but small in size and infertile. These mice also develop insulin-deficient diabetes due to a reduction in beta-islet pancreatic cells. In contrast, mice expressing a mutant Cdk4 that cannot bind the cell-cycle inhibitor P16INK4a display pancreatic hyperplasia due to abnormal proliferation of beta-islet cells. These results establish Cdk4 as an essential regulator of specific cell types.

647 citations

Journal ArticleDOI
TL;DR: Findings show that H2O2 specifically increases VSMC DNA synthesis and suggest a role for this oxidant in intimal proliferation, especially after arterial injury.
Abstract: Vascular smooth muscle cells (VSMCs) proliferate in response to arterial injury. Recent findings suggest that, in addition to platelet-derived growth factors, growth factors from inflammatory cells and endothelial cells at the site of injury may contribute to VSMC proliferation. We hypothesized that a common mechanism by which endothelial cells and inflammatory cells stimulate VSMC growth could be the active oxygen species (i.e., O2-, H2O2, and .OH) generated during arterial injury. Using xanthine/xanthine oxidase to generate active oxygen species, we studied the effects of these agents on VSMC growth. Xanthine/xanthine oxidase (100 microM xanthine and 5 microunits/ml xanthine oxidase) stimulated DNA synthesis in growth-arrested VSMCs by 180% over untreated cells. Administration of the scavenging enzymes superoxide dismutase and catalase demonstrated that H2O2 was primarily responsible for xanthine/xanthine oxidase-induced VSMC DNA synthesis. H2O2 directly increased VSMC DNA synthesis and cell number (maximal at 200 microM) but decreased DNA synthesis of endothelial cells and fibroblasts. This effect was protein kinase C independent: sphingosine, a potent protein kinase C inhibitor, failed to block H2O2-induced VSMC DNA synthesis. H2O2 (200 microM) stimulated c-myc and c-fos mRNA levels by fourfold and 20-fold, respectively, as compared with quiescent levels. In contrast to DNA synthesis, H2O2 induction of c-myc and c-fos mRNA was primarily protein kinase C dependent. These findings show that H2O2 specifically increases VSMC DNA synthesis and suggest a role for this oxidant in intimal proliferation, especially after arterial injury.

646 citations

Journal ArticleDOI
TL;DR: Interestingly, subclones with both high and low differentiation potential produced similar amounts of collagen in culture and expressed comparable basal levels of mRNA encoding Osf2/Cbfa1, an osteoblast‐related transcription factor, and there was no clear relationship between levels of this message and induction of mRNAs for other differentiation markers.
Abstract: A series of subclonal cell lines with high or low differentiation/mineralization potential after growth in the presence of ascorbic acid (AA) were derived from murine MC3T3-E1 cells. Subclones were characterized in terms of their ability to mineralize a collagenous extracellular matrix both in vitro and in vivo and express osteoblast-related genes. When compared with nonmineralizing cells, mineralizing subclones selectively expressed mRNAs for the osteoblast markers, bone sialoprotein (BSP), osteocalcin (OCN), and the parathyroid hormone (PTH)/parathyroid hormone-related protein (PTHrP) receptor. In contrast, alkaline phosphatase mRNA was present in certain nonmineralizing as well as mineralizing subclones, suggesting that its expression may be subject to different controls from other osteoblast markers. Only highly differentiating subclones exhibited strong AA-dependent induction of a transiently transfected OCN promoter-luciferase reporter gene, indicating that there was a good correlation between mRNA levels and transcriptional activity. Consistent with its postulated role in biomineralization, BSP as measured by Western blotting was only present in mineralizing subclones. After implantation into immunodeficient mice, highly differentiating subclones formed bone-like ossicles resembling woven bone, while poorly differentiating cells only produced fibrous tissue. Interestingly, subclones with both high and low differentiation potential produced similar amounts of collagen in culture and expressed comparable basal levels of mRNA encoding Osf2/Cbfa1, an osteoblast-related transcription factor. Although some strongly differentiating cells exhibited a modest AA-dependent up-regulation of Osf2/Cbfa1 mRNA, there was no clear relationship between levels of this message and induction of mRNAs for other differentiation markers. Thus, the mere presence of Osf2/Cbfa1 in a subclone was not sufficient for osteoblast differentiation. These subclones will be very useful for studying critical events in osteoblast differentiation and mineralization.

646 citations

Journal ArticleDOI
02 Apr 1993-Science
TL;DR: The activated Ki-ras gene plays a key role in colorectal tumorigenesis through altered cell differentiation and cell growth.
Abstract: Point mutations that activate the Ki-ras proto-oncogene are presented in about 50 percent of human colorectal tumors. To study the functional significance of these mutations, the activated Ki-ras genes in two human colon carcinoma cell lines, DLD-1 and HCT 116, were disrupted by homologous recombination. Compared with parental cells, cells disrupted at the activated Ki-ras gene were morphologically altered, lost the capacity for anchorage-independent growth, grew more slowly both in vitro and in nude mice, and showed reduced expression of c-myc. Thus, the activated Ki-ras gene plays a key role in colorectal tumorigenesis through altered cell differentiation and cell growth.

646 citations

Journal ArticleDOI
TL;DR: It is found that the spontaneous migration of bovine aortic endothelial cells from the edge of a denuded area in a confluent monolayer is dependent upon the release of endogenous basic fibroblast growth factor (bFGF).
Abstract: We have found that the spontaneous migration of bovine aortic endothelial cells from the edge of a denuded area in a confluent monolayer is dependent upon the release of endogenous basic fibroblast growth factor (bFGF). Cell movement is blocked by purified polyclonal rabbit IgG to bFGF as well as affinity purified anti-bFGF IgG and anti-bFGF F(ab')2 fragments. The inhibitory effect of the immunoglobulins is dependent upon antibody concentration, is reversible, is overcome by the addition of recombinant bFGF, and is removed by affinity chromatography of the antiserum through a column of bFGF-Sepharose. Cell movement is also reversibly inhibited by the addition of protamine sulfate and suramin; two agents reported to block bFGF binding to its receptor. The addition of recombinant bFGF to wounded monolayers accelerates the movement of cells into the denuded area. Transforming growth factor beta which has been shown to antagonize several other effects of bFGF also inhibits cell movement. The anti-bFGF IgG prevents the movement of bovine capillary endothelial cells, BHK-21, NIH 3T3, and human skin fibroblasts into a denuded area. Antibodies to bFGF, as well as suramin and protamine sulfate also suppress the basal levels of plasminogen activator and DNA synthesis in bovine aortic endothelial cells.

644 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
94% related
Cellular differentiation
90.9K papers, 6M citations
93% related
Gene expression
113.3K papers, 5.5M citations
92% related
Receptor
159.3K papers, 8.2M citations
91% related
Regulation of gene expression
85.4K papers, 5.8M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232,175
20222,858
20212,233
20202,815
20193,368
20183,431