scispace - formally typeset
Search or ask a question
Topic

Cell culture

About: Cell culture is a research topic. Over the lifetime, 133361 publications have been published within this topic receiving 5364150 citations. The topic is also known as: cell culture techniques.


Papers
More filters
Journal ArticleDOI
24 Aug 1990-Science
TL;DR: It is shown that the wild-type gene can specifically suppress the growth of human colorectal carcinoma cells in vitro and that an in vivo-derived mutation resulting in a single conservative amino acid substitution in the p53 gene product abrogates this suppressive ability.
Abstract: Mutations of the p53 gene occur commonly in colorectal carcinomas and the wild-type p53 allele is often concomitantly deleted. These findings suggest that the wild-type gene may act as a suppressor of colorectal carcinoma cell growth. To test this hypothesis, wild-type or mutant human p53 genes were transfected into human colorectal carcinoma cell lines. Cells transfected with the wild-type gene formed colonies five- to tenfold less efficiently than those transfected with a mutant p53 gene. In those colonies that did form after wild-type gene transfection, the p53 sequences were found to be deleted or rearranged, or both, and no exogenous p53 messenger RNA expression was observed. In contrast, transfection with the wild-type gene had no apparent effect on the growth of epithelial cells derived from a benign colorectal tumor that had only wild-type p53 alleles. Immunocytochemical techniques demonstrated that carcinoma cells expressing the wild-type gene did not progress through the cell cycle, as evidenced by their failure to incorporate thymidine into DNA. These studies show that the wild-type gene can specifically suppress the growth of human colorectal carcinoma cells in vitro and that an in vivo-derived mutation resulting in a single conservative amino acid substitution in the p53 gene product abrogates this suppressive ability.

1,786 citations

Journal ArticleDOI
TL;DR: The characteristics of 3D cell culture systems in comparison to the two-dimensional monolayer culture are discussed, focusing on cell growth conditions, cell proliferation, population, and gene and protein expression profiles.
Abstract: Three-dimensional (3D) cell culture systems have gained increasing interest in drug discovery and tissue engineering due to their evident advantages in providing more physiologically relevant information and more predictive data for in vivo tests. In this review, we discuss the characteristics of 3D cell culture systems in comparison to the two-dimensional (2D) monolayer culture, focusing on cell growth conditions, cell proliferation, population, and gene and protein expression profiles. The innovations and development in 3D culture systems for drug discovery over the past 5 years are also reviewed in the article, emphasizing the cellular response to different classes of anticancer drugs, focusing particularly on similarities and differences between 3D and 2D models across the field. The progression and advancement in the application of 3D cell cultures in cell-based biosensors is another focal point of this review.

1,784 citations

Journal ArticleDOI
TL;DR: Analysis of the kinetics of the cytotoxic assay revealed a rapid induction of lysis within one to four hours, arguing against any conventional in vitro induction of immune response.
Abstract: In the spleens of young, adult mice there exist naturally occurring killer lymphocytes with specificity for mouse Moloney leukemia cells. The lytic activity was directed against syngeneic or allogeneic Moloney leukemia cells to a similar extent, but was primarily expressed when tested against in vitro grown leukemia cells. Two leukemias of non-Moloney origin were resistant and so was the mastocytoma line P815. Although killer activity varied between different strains of mice, the specificity of lysis was the same as indicated by competition experiments using unlabeled Moloney or other tumor cells as inhibitors in the cytotoxic assays. Capacity to compete and sensitivy to lysis by the killer cells were found to be highly positively correlated. Analysis of the kinetics of the cytotoxic assay revealed a rapid induction of lysis within one to four hours, arguing against any conventional in vitro induction of immune response. No evidence was found of soluble factors playing any role in the cytolytic assay.

1,736 citations

Journal ArticleDOI
TL;DR: This study for the first time provided evidence that CD133 positive cancer stem cells display strong capability on tumor's resistance to chemotherapy.
Abstract: Recently, a small population of cancer stem cells in adult and pediatric brain tumors has been identified. Some evidence has suggested that CD133 is a marker for a subset of leukemia and glioblastoma cancer stem cells. Especially, CD133 positive cells isolated from human glioblastoma may initiate tumors and represent novel targets for therapeutics. The gene expression and the drug resistance property of CD133 positive cancer stem cells, however, are still unknown. In this study, by FACS analysis we determined the percentage of CD133 positive cells in three primary cultured cell lines established from glioblastoma patients 10.2%, 69.7% and 27.5%, respectively. We also determined the average mRNA levels of markers associated with neural precursors. For example, CD90, CD44, CXCR4, Nestin, Msi1 and MELK mRNA on CD133 positive cells increased to 15.6, 5.7, 337.8, 21.4, 84 and 1351 times, respectively, compared to autologous CD133 negative cells derived from cell line No. 66. Additionally, CD133 positive cells express higher levels of BCRP1 and MGMT mRNA, as well as higher mRNA levels of genes that inhibit apoptosis. Furthermore, CD133 positive cells were significantly resistant to chemotherapeutic agents including temozolomide, carboplatin, paclitaxel (Taxol) and etoposide (VP16) compared to autologous CD133 negative cells. Finally, CD133 expression was significantly higher in recurrent GBM tissue obtained from five patients as compared to their respective newly diagnosed tumors. Our study for the first time provided evidence that CD133 positive cancer stem cells display strong capability on tumor's resistance to chemotherapy. This resistance is probably contributed by the CD133 positive cell with higher expression of on BCRP1 and MGMT, as well as the anti-apoptosis protein and inhibitors of apoptosis protein families. Future treatment should target this small population of CD133 positive cancer stem cells in tumors to improve the survival of brain tumor patients.

1,725 citations

Journal ArticleDOI
TL;DR: This is the first study to show that extracellular miRNAs are predominantly exosomes/microvesicles free and are associated with Ago proteins, and hypothesize that ext racellular miRNA are in the most part by-products of dead cells that remain in extrace cellular space due to the high stability of the Ago2 protein and Ago2-miRNA complex.
Abstract: MicroRNAs (miRNAs), a class of post-transcriptional gene expression regulators, have recently been detected in human body fluids, including peripheral blood plasma as extracellular nuclease resistant entities. However, the origin and function of extracellular circulating miRNA remain essentially unknown. Here, we confirmed that circulating mature miRNA in contrast to mRNA or snRNA is strikingly stable in blood plasma and cell culture media. Furthermore, we found that most miRNA in plasma and cell culture media completely passed through 0.22 µm filters but remained in the supernatant after ultracentrifugation at 110 000g indicating the non-vesicular origin of the extracellular miRNA. Furthermore, western blot immunoassay revealed that extracellular miRNA ultrafiltrated together with the 96 kDa Ago2 protein, a part of RNA-induced silencing complex. Moreover, miRNAs in both blood plasma and cell culture media co-immunoprecipited with anti-Ago2 antibody in a detergent free environment. This is the first study to show that extracellular miRNAs are predominantly exosomes/microvesicles free and are associated with Ago proteins. We hypothesize that extracellular miRNAs are in the most part by-products of dead cells that remain in extracellular space due to the high stability of the Ago2 protein and Ago2-miRNA complex. Nevertheless, our data does not reject the possibility that some miRNAs can be associated with exosomes.

1,712 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
94% related
Cellular differentiation
90.9K papers, 6M citations
93% related
Gene expression
113.3K papers, 5.5M citations
92% related
Receptor
159.3K papers, 8.2M citations
91% related
Regulation of gene expression
85.4K papers, 5.8M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232,175
20222,858
20212,233
20202,815
20193,368
20183,431