scispace - formally typeset
Search or ask a question
Topic

Cell culture

About: Cell culture is a research topic. Over the lifetime, 133361 publications have been published within this topic receiving 5364150 citations. The topic is also known as: cell culture techniques.


Papers
More filters
Journal ArticleDOI
11 Jul 1997-Science
TL;DR: Cleavage of laminin-5 by MMP2 and the resulting activation of the Ln-5 cryptic site may provide new targets for modulation of tumor cell invasion and tissue remodeling.
Abstract: Structural changes in the extracellular matrix are necessary for cell migration during tissue remodeling and tumor invasion. Specific cleavage of laminin-5 (Ln-5) by matrix metalloprotease-2 (MMP2) was shown to induce migration of breast epithelial cells. MMP2 cleaved the Ln-5 gamma2 subunit at residue 587, exposing a putative cryptic promigratory site on Ln-5 that triggers cell motility. This altered form of Ln-5 is found in tumors and in tissues undergoing remodeling, but not in quiescent tissues. Cleavage of Ln-5 by MMP2 and the resulting activation of the Ln-5 cryptic site may provide new targets for modulation of tumor cell invasion and tissue remodeling.

1,251 citations

Journal ArticleDOI
TL;DR: Feeder-independent human ES cell culture that includes protein components solely derived from recombinant sources or purified from human material is reported.
Abstract: We have previously reported that high concentrations of basic fibroblast growth factor (bFGF) support feeder-independent growth of human embryonic stem (ES) cells, but those conditions included poorly defined serum and matrix components. Here we report feeder-independent human ES cell culture that includes protein components solely derived from recombinant sources or purified from human material. We describe the derivation of two new human ES cell lines in these defined culture conditions.

1,246 citations

Journal ArticleDOI
TL;DR: It is shown that bulge cells in adult mice generate all epithelial cell types within the intact follicle and hair during normal hair follicle cycling and provide potential targets for the treatment of hair loss and other disorders of skin and hair.
Abstract: The hair follicle bulge possesses putative epithelial stem cells. Characterization of these cells has been hampered by the inability to target bulge cells genetically. Here, we use a Keratin1-15 (Krt1-15, also known as K15) promoter to target mouse bulge cells with an inducible Cre recombinase construct or with the gene encoding enhanced green fluorescent protein (EGFP), which allow for lineage analysis and for isolation of the cells. We show that bulge cells in adult mice generate all epithelial cell types within the intact follicle and hair during normal hair follicle cycling. After isolation, adult Krt1-15-EGFP-positive cells reconstituted all components of the cutaneous epithelium and had a higher proliferative potential than Krt1-15-EGFP-negative cells. Genetic profiling of hair follicle stem cells revealed several known and unknown receptors and signaling pathways important for maintaining the stem cell phenotype. Ultimately, these findings provide potential targets for the treatment of hair loss and other disorders of skin and hair.

1,245 citations

PatentDOI
TL;DR: This is the first demonstration of induction ofcardiomyocyte differentiation in hES cells that do not undergo spontaneous cardiogenesis and provides a model for the study of human cardiomyocytes in culture and could be a step forward in the development of cardiomeocyte transplantation therapies.
Abstract: A method for inducing cardiomyocyte differentiation of a hES cell, the method comprising co-culturing the hES cell with a cell excreting at least one cardiomyocyte differentiation inducing factor or with an extracellular medium therefrom, under conditions that induce differentiation, cells and cell populations so produced, and uses of the cells.

1,243 citations

Journal ArticleDOI
TL;DR: Evidence is reported for the presence of ALT in a subset of tumor-derived cell lines and tumors, presumably via one or more novel telomere-lengthening mechanisms that the authors refer to as ALT (alternative lengthening of telomeres)
Abstract: The gradual loss of DNA from the ends of telomeres has been implicated in the control of cellular proliferative potential1–3. Telomerase is an enzyme that restores telomeric DNA sequences4, and expression of its activity was thought to be essential for the immortalization of human cells, both in vitro and in tumor progression in vivo5. Telomerase activity has been detected in 50–100% of tumors of different types, but not in most normal adult somatic tissues6,7. It has also been detected in about 70% of human cell lines immortalized in vitro and in all tumor-derived cell lines examined to date7. It has previously been shown that in vitro immortalized telomerase-negative cell lines acquire very long and heterogeneous telomeres in association with immortalization8–11 presumably via one or more novel telomere-lengthening mechanisms that we refer to as ALT (alternative lengthening of telomeres)11. Here we report evidence for the presence of ALT in a subset of tumor-derived cell lines and tumors. The maintenance of telomeres by a mechanism other than telomerase, even in a minority of cancers, has major implications for therapeutic uses of telomerase inhibitors.

1,242 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
94% related
Cellular differentiation
90.9K papers, 6M citations
93% related
Gene expression
113.3K papers, 5.5M citations
92% related
Receptor
159.3K papers, 8.2M citations
91% related
Regulation of gene expression
85.4K papers, 5.8M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232,175
20222,858
20212,233
20202,815
20193,368
20183,431