scispace - formally typeset
Search or ask a question
Topic

Cell Cycle Protein

About: Cell Cycle Protein is a research topic. Over the lifetime, 1629 publications have been published within this topic receiving 134010 citations.


Papers
More filters
Journal ArticleDOI
05 May 1995-Cell
TL;DR: The main role of pRB is to act as a signal transducer connecting the cell cycle clock with the transcriptional machinery, allowing the clock to control the expression of banks of genes that mediate advance of the cell through a critical phase of its growth cycle.

4,904 citations

Journal ArticleDOI
25 May 2007-Science
TL;DR: A large-scale proteomic analysis of proteins phosphorylated in response to DNA damage on consensus sites recognized by ATM and ATR is performed and more than 900 regulated phosphorylation sites encompassing over 700 proteins are identified.
Abstract: Cellular responses to DNA damage are mediated by a number of protein kinases, including ATM (ataxia telangiectasia mutated) and ATR (ATM and Rad3-related). The outlines of the signal transduction portion of this pathway are known, but little is known about the physiological scope of the DNA damage response (DDR). We performed a large-scale proteomic analysis of proteins phosphorylated in response to DNA damage on consensus sites recognized by ATM and ATR and identified more than 900 regulated phosphorylation sites encompassing over 700 proteins. Functional analysis of a subset of this data set indicated that this list is highly enriched for proteins involved in the DDR. This set of proteins is highly interconnected, and we identified a large number of protein modules and networks not previously linked to the DDR. This database paints a much broader landscape for the DDR than was previously appreciated and opens new avenues of investigation into the responses to DNA damage in mammals.

2,967 citations

Journal ArticleDOI
13 Oct 2000-Cell
TL;DR: Findings reveal that the target of rapamycin TOR controls an unusually abundant and diverse set of readouts all of which are important for cell growth, suggesting that this conserved kinase is such a central regulator.

1,982 citations

Journal ArticleDOI
30 Jun 1994-Nature
TL;DR: A mammalian FKBP–rapamycin-associated protein (FRAP) is isolate whose binding to structural variants of rapamycin complexed to FK BP12 correlates with the ability of these ligands to inhibit cell-cycle progression.
Abstract: THE structurally related natural products rapamycin and FK506 bind to the same intracellular receptor, FKBP12, yet the resulting complexes interfere with distinct signalling pathways1,2. FKBP12–rapamycin inhibits progression through the Gl phase of the cell cycle in osteosarcoma3, liver4, 5 and T cells6, 7 as well as in yeast8 and interferes with mitogenic signalling pathways that are involved in Gl progression9, 10 namely with activation of the protein p70S6k (refs 5,11–13) and cyclin-dependent kinases3, 14–16. Here we isolate a mammalian FKBP–rapamycin-associated protein (FRAP) whose binding to structural variants of rapamycin complexed to FKBP12 correlates with the ability of these ligands to inhibit cell-cycle progression. Peptide sequences from purified bovine FRAP were used to isolate a human cDNA clone that is highly related to the DRR1/TOR1 and DRR2/TOR2 gene products from Saccharomyces cerevisiae8, 17, 18. Although it has not been previously demonstrated that either of the DRR/TOR gene products can bind the FKBP–rapamycin complex directly17, 19 these yeast genes have been genetically linked to a rapamycin-sensitive pathway and are thought to encode lipid kinases17–20.

1,960 citations

Journal ArticleDOI
TL;DR: The AQUA strategy was used to quantify low abundance yeast proteins involved in gene silencing, quantitatively determine the cell cycle-dependent phosphorylation of Ser-1126 of human separase protein, and identify kinases capable of phosphorylating Ser-1501 of separase in an in vitro kinase assay.
Abstract: A need exists for technologies that permit the direct quantification of differences in protein and posttranslationally modified protein expression levels. Here we present a strategy for the absolute quantification (termed AQUA) of proteins and their modification states. Peptides are synthesized with incorporated stable isotopes as ideal internal standards to mimic native peptides formed by proteolysis. These synthetic peptides can also be prepared with covalent modifications (e.g., phosphorylation, methylation, acetylation, etc.) that are chemically identical to naturally occurring posttranslational modifications. Such AQUA internal standard peptides are then used to precisely and quantitatively measure the absolute levels of proteins and posttranslationally modified proteins after proteolysis by using a selected reaction monitoring analysis in a tandem mass spectrometer. In the present work, the AQUA strategy was used to (i) quantify low abundance yeast proteins involved in gene silencing, (ii) quantitatively determine the cell cycle-dependent phosphorylation of Ser-1126 of human separase protein, and (iii) identify kinases capable of phosphorylating Ser-1501 of separase in an in vitro kinase assay. The methods described here represent focused, alternative approaches for studying the dynamically changing proteome.

1,801 citations


Network Information
Related Topics (5)
Regulation of gene expression
85.4K papers, 5.8M citations
92% related
Signal transduction
122.6K papers, 8.2M citations
91% related
Transcription factor
82.8K papers, 5.4M citations
91% related
Phosphorylation
69.3K papers, 3.8M citations
90% related
RNA
111.6K papers, 5.4M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20234
20229
202116
202020
201921
201823