scispace - formally typeset
Search or ask a question

Showing papers on "Cell growth published in 1991"


Journal ArticleDOI
TL;DR: A pilot-scale, in vitro, anticancer drug screen utilizing a panel of 60 human tumor cell lines organized into subpanels representing leukemia, melanoma, and cancers of the lung, colon, kidney, ovary, and central nervous system is described.
Abstract: We describe here the development and implementation of a pilot-scale, in vitro, anticancer drug screen utilizing a panel of 60 human tumor cell lines organized into subpanels representing leukemia, melanoma, and cancers of the lung, colon, kidney, ovary, and central nervous system. The ultimate goal of this disease-oriented screen is to facilitate the discovery of new compounds with potential cell line-specific and/or subpanel-specific antitumor activity. In the current screening protocol, each cell line is inoculated onto microtiter plates, then preincubated for 24-28 hours. Subsequently, test agents are added in five 10-fold dilutions and the culture is incubated for an additional 48 hours. For each test agent, a dose-response profile is generated. End-point determinations of the cell viability or cell growth are performed by in situ fixation of cells, followed by staining with a protein-binding dye, sulforhodamine B (SRB). The SRB binds to the basic amino acids of cellular macromolecules; the solubilized stain is measured spectrophotometrically to determine relative cell growth or viability in treated and untreated cells. Following the pilot screening studies, a screening rate of 400 compounds per week has been consistently achieved.

3,011 citations


Journal ArticleDOI
23 Aug 1991-Science
TL;DR: Nonallelic noncomplementation between FPR1, TOR1, and TOR2 alleles suggests that the products of these genes may interact as subunits of a protein complex that may mediate nuclear entry of signals required for progression through the cell cycle.
Abstract: FK506 and rapamycin are related immunosuppressive compounds that block helper T cell activation by interfering with signal transduction. In vitro, both drugs bind and inhibit the FK506-binding protein (FKBP) proline rotamase. Saccharomyces cerevisiae cells treated with rapamycin irreversibly arrested in the G1 phase of the cell cycle. An FKBP-rapamycin complex is concluded to be the toxic agent because (i) strains that lack FKBP proline rotamase, encoded by FPR1, were viable and fully resistant to rapamycin and (ii) FK506 antagonized rapamycin toxicity in vivo. Mutations that conferred rapamycin resistance altered conserved residues in FKBP that are critical for drug binding. Two genes other than FPR1, named TOR1 and TOR2, that participate in rapamycin toxicity were identified. Nonallelic noncomplementation between FPR1, TOR1, and TOR2 alleles suggests that the products of these genes may interact as subunits of a protein complex. Such a complex may mediate nuclear entry of signals required for progression through the cell cycle.

1,887 citations


Journal ArticleDOI
01 Mar 1991-Blood
TL;DR: In vitro and in vivo studies suggest that all-trans retinoic acid (RA) treatment restores cell maturation, and the first permanent cell line with t(15;17), derived from the marrow of a patient with APL in relapse is isolated.

903 citations


Journal ArticleDOI
TL;DR: Analysis of amplified DNA sequences present in a tumorigenic mouse cell line provided evidence that a gene, mdm2, that is amplified more than 50‐fold in the 3T3DM cell line, induces tumorigenicity when experimentally overexpressed in NIH3T3 cells and in Rat2 cells.
Abstract: We have carried out an analysis of amplified DNA sequences present in a tumorigenic mouse cell line, designated 3T3DM, to determine if the presence of cellular transforming activity is correlated with the elevated expression of any of the amplified genes These studies utilized a selection protocol that allowed for DNA sequence amplification after the introduction of each gene into non-transformed recipient cells Cell lines obtained from this selection protocol were assayed for tumorigenicity in nude mice The results provided evidence that a gene, mdm2, that is amplified more than 50-fold in the 3T3DM cell line, induces tumorigenicity when experimentally overexpressed in NIH3T3 cells and in Rat2 cells Analysis of the predicted amino acid composition of the mdm2 product(s) revealed features similar to those that have been shown to be functionally significant in certain DNA binding proteins/transcriptional activators These include two potential metal binding motifs and a negatively charged domain rich in acidic amino acid residues Overall, the data support the conclusion that mdm2 represents an evolutionarily conserved gene with tumorigenic potential and a predicted role in mechanisms of cellular growth control

713 citations


Journal ArticleDOI
18 Jan 1991-Science
TL;DR: The CCAAT-enhancer binding protein (C/EBP) has now been found to promote the terminal differentiation of adipocytes and may have a fundamental role in regulating the balance between cell growth and differentiation in higher animals.
Abstract: The CCAAT-enhancer binding protein (C/EBP) has now been found to promote the terminal differentiation of adipocytes. During the normal course of adipogenesis, C/EBP expression is restricted to a terminal phase wherein proliferative growth is arrested, and specialized cell phenotype is first manifested. A conditional form of C/EBP was developed, making it feasible to test its capacity to regulate the differentiation of cultured adipocytes. Premature expression of C/EBP in adipoblasts caused a direct cessation of mitotic growth. Moreover, when abetted by the effects of three adipogenic hormones, C/EBP promoted terminal cell differentiation. Since C/EBP is expressed in a variety of tissues, it may have a fundamental role in regulating the balance between cell growth and differentiation in higher animals.

704 citations


Journal ArticleDOI
18 Oct 1991-Cell
TL;DR: Neither co-injection of RB with a T antigen peptide nor injection into cells expressing T antigen prevents cells from progressing into S phase, which supports the hypothesis that T antigen binding has functional consequences for RB.

702 citations


Journal ArticleDOI
25 Jan 1991-Cell
TL;DR: Mammalian tissue development and regeneration take place within a milieu of regulatory growth factors, such that survival, proliferation, differentiation, and certain aspects of cell behavior are all influenced by a balance between stimulatory and inhibitory signals.

677 citations


Journal ArticleDOI
TL;DR: Structural and functional evidence is presented that human SF and human HGF are identical proteins encoded by a single gene and SF in fact acts as a hepatocyte growth factor, which stimulates DNA synthesis of activity and induces invasiveness of various epithelial cells.
Abstract: Scatter factor (SF), a secretory protein of fibroblasts, dissociates and increases the motility of epithelial cells and may be involved in cell migration processes during embryogenesis and tumor progression. Hepatocyte growth factor (HGF), a protein isolated from serum of patients with liver failure, is a potent mitogen for hepatocytes and is thought to play a role in liver regeneration. Here we present structural and functional evidence that human SF and human HGF (and also the human lung fibroblast-derived mitogen) are identical proteins encoded by a single gene, since (i) no major difference could be found by protein sequencing, by cDNA analysis, and by immunological comparison and (ii) SF in fact acts as a hepatocyte growth factor--i.e., stimulates DNA synthesis of activity--i.e., dissociates and induces invasiveness of various epithelial cells. The human SF/HGF gene was localized to chromosome bands 7q11.2-21. These results have important consequences for further studies on the involvement of SF/HGF as a modulator of cellular growth and motility in embryonal, malignant, and regenerative processes.

660 citations


Journal ArticleDOI
Jacques Banchereau, P de Paoli1, A Valle1, Eric Garcia1, Françoise Rousset1 
04 Jan 1991-Science
TL;DR: In combination with interleukin-4, factor-dependent long-term normal human B cell lines were generated that were consistently negative for Epstein-Barr viral infection and cross-linking of CD40 is likely to represent an important phenomenon in the clonal expansion of B cells.
Abstract: CD40 is a 45- to 50-kilodalton transmembrane glycoprotein expressed on B lymphocytes, epithelial cells, and some carcinoma cell lines. Human resting B lymphocytes entered a state of sustained proliferation when incubated with both the mouse fibroblastic Ltk- cell line that had been transfected with the human Fc receptor (Fc gamma RII/CDw32) and monoclonal antibodies to CD40. In combination with interleukin-4, factor-dependent long-term normal human B cell lines were generated that were consistently negative for Epstein-Barr viral infection. Thus, cross-linking of CD40 is likely to represent an important phenomenon in the clonal expansion of B cells.

606 citations


Journal ArticleDOI
TL;DR: Two 2',3'-dideoxy-3'-thiapyrimidine nucleosides were found to be the most potent anti-HBV compounds and both SddC and 5-FSddC should be further evaluated for the treatment of human HBV infection.
Abstract: Several 2',3'-dideoxy-3'-thiapyrimidine nucleosides were studied for their ability to inhibit hepatitis B virus (HBV) DNA replication in a HBV-transfected cell line (2.2.15). 2',3'-Dideoxy-3'-thiacytidine (SddC) and 5-fluoro-2',3'-dideoxy-3'-thiacytidine(5-FSddC) were found to be the most potent anti-HBV compounds of those examined. Both compounds resulted in nearly complete cessation of viral DNA replication at 0.5 microM, as monitored by the absence of both intracellular episomal and secreted viral DNAs. The HBV-specific RNAs were not reduced at concentrations that completely blocked HBV DNA replication, suggesting that the inhibitory target is HBV DNA synthesis. The antiviral action of SddC and 5-FSddC was reversible. The concentration of SddC and 5-FSddC required to inhibit 50% of 4-day cell growth in culture was 37 microM and more than 200 microM, respectively. Unlike 2',3'-dideoxycytidine, these two compounds do not affect mitochondrial DNA synthesis in cells at concentrations lower than that required to inhibit cell growth. In view of the potent and selective antiviral activity, both SddC and 5-FSddC should be further evaluated for the treatment of human HBV infection.

560 citations


Journal Article
TL;DR: It is suggested that the antiproliferative activity of the Vinca alkaloids at their lowest effective concentrations in HeLa cells is due to inhibition of mitotic spindle function, and that specific alterations of spindle microtubule dynamics appear to differ among the five VincA congeners.
Abstract: We have used a structure-activity approach to investigate whether the Vinca alkaloids inhibit cell proliferation primarily by means of their effects on mitotic spindle microtubules or by another mechanism or by a combination of mechanisms. Five Vinca alkaloids were used to investigate the relationship in HeLa cells between inhibition of cell proliferation and blockage of mitosis, alteration of spindle organization, and depolymerization of microtubules. Indirect immunofluorescence staining of microtubules and 4,6-diamidino-2-phenylindole staining of chromatin were used to characterize the effects of the drugs on the distributions of cells in stages of the cell cycle and on the organization of microtubules and chromosomes in metaphase spindles. The microtubule polymer was isolated from cells and quantified using a competitive enzyme-linked immunoadsorbent assay for tubulin. We observed a nearly perfect coincidence between the concentration of each Vinca derivative that inhibited cell proliferation and the concentration that caused 50% accumulation of cells at metaphase, despite the fact that the antiproliferative potencies of the drugs varied over a broad concentration range. Inhibition of cell proliferation and blockage of cells at metaphase at the lowest effective concentrations of all Vinca derivatives occurred with little or no microtubule depolymerization or spindle disorganization. With increasing drug concentrations, the organization of microtubules and chromosomes in arrested mitotic spindles deteriorated in a manner that was common to all five congeners. These results indicate that the antiproliferative activity of the Vinca alkaloids at their lowest effective concentrations in HeLa cells is due to inhibition of mitotic spindle function. The results suggest further that the Vinca alkaloids inhibit cell proliferation by altering the dynamics of tubulin addition and loss at the ends of mitotic spindle microtubules rather than by depolymerizing the microtubules. The specific alterations of spindle microtubule dynamics appear to differ among the five Vinca congeners, and such differences may be responsible for differences in the antitumor specificities of the drugs.

Journal ArticleDOI
TL;DR: Primary rat embryo fibroblasts were transformed by a p53 mutant (alanine to valine change at amino acid 135) plus ras, and the S-phase cells appear to be immune to the p53 negative regulation of growth until they enter the next G1 period.
Abstract: Primary rat embryo fibroblasts were transformed by a p53 mutant (alanine to valine change at amino acid 135) plus ras. This p53val135 mutant is temperature sensitive for a conformational change detected by the binding of a monoclonal antibody, PAb246, which recognizes the wild-type protein or the great majority of p53val135 at 32.5 degrees C. At 37 degrees C, both mutant and wild-type p53 conformational forms co-exist in the cells, while at 39.5 degrees C, the majority of the p53val135 in the cell is in a mutant conformation not recognized by PAb246 antibody. At 39.5 degrees C, the mutant p53 is localized in the cytoplasm of the cell. At 32.5 degrees C, the p53 protein enters the nucleus and stops the growth of these cells. At 37 degrees C where there is a mixture of mutant and wild-type p53, the wild-type p53 protein is in a complex with hsc70 and mutant p53 protein in the cytoplasm of the cell during G1. This wild-type protein enters the nucleus as the cells enter the S-phase of the cell cycle. At 32.5 degrees C, the cells stop replication and arrest at the G1/S border. After 48 hr at 32.5 degrees C, 91% of the cells are in the G1 fraction of the cell cycle. The S-phase cells appear to be immune to the p53 negative regulation of growth until they enter the next G1 period.(ABSTRACT TRUNCATED AT 250 WORDS)

Journal ArticleDOI
TL;DR: A model is discussed by which alpha-tocopherol inhibits cell proliferation by interacting with the cytosolic protein kinase C, thus preventing its membrane translocation and activation.

Journal Article
TL;DR: Lovastatin appears to prevent formation of an early intermediate in the cholesterol pathway that is essential for progression of cells through early G1 phase of the cell cycle.
Abstract: Synchronization of mammalian cells is essential for investigations involving cell proliferation. A simple method for obtaining synchrony in all types of cells, through several cycles and with minimal overall metabolic perturbations, has not yet been available. We describe a procedure for synchronizing normal as well as tumor cells reversibly in the G 1 phase of the cell cycle using Lovastatin, an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. This method of synchronization was successful with all cell lines tested, including normal and tumor cells of mouse, hamster, and human origins. For example, when MCF-7 human breast cancer cells were synchronized with Lovastatin and released by the addition of mevalonic acid (the product of the reaction catalyzed by 3-hydroxy-3-methylglutaryl-coenzyme A reductase), 3 phases of accelerated thymidine incorporation into DNA corresponding to 3 S phases of the cell cycle occurred during a 90-h period of cell replication. Thymidine incorporation was decreased to ≤4% during the initial lag of 18 h before the first S phase, and maximum incorporation was then achieved after only 6 h. The antibody Ki-67, which detects a nuclear antigen associated with proliferation, was present in cells arrested with Lovastatin. This fact, together with the lack of thymidine incorporation during the initial lag time, indicates that the cells were arrested in the G 1 and not in the G 0 phase of the cell cycle. Furthermore, in synchronized tumor-derived human breast epithelial cells, histone H4 RNA was low after Lovastatin release and increased with the onset of DNA synthesis. Concomitant synthesis of DNA and histone H4 RNA expression could be observed for 2 cycles. Minimal perturbations of general metabolic functions occurred since the rate of RNA, protein, and initial DNA synthesis were unaffected by Lovastatin, as evidenced by [ 3 H]uridine, [ 3 H]leucine, and initial [ 3 H]thymidine incorporation. Finally, while the Lovastatin-induced synchronization was overcome by mevalonic acid, addition of squalene or cholesterol-ethanol had no such effect. Thus, Lovastatin appears to prevent formation of an early intermediate in the cholesterol pathway that is essential for progression of cells through early G 1 phase.

Journal ArticleDOI
TL;DR: It was found that microinjection of anti-Fos and anti-Jun family antibodies efficiently blocked the entrance to the S phase of serum-stimulated or asynchronously growing cells, but the antibodies against single members of the Fos family only partially inhibited DNA synthesis.
Abstract: The expression of different members of the Jun and Fos families of transcription factors is rapidly induced following serum stimulation of quiescent fibroblasts. To determine whether these proteins are required for cell cycle progression, we microinjected affinity-purified antibodies directed against c-Fos, FosB, Fra-1, c-Jun, JunB, and JunD, and antibodies that recognize either the Fos or the Jun family of proteins, into Swiss 3T3 cells and determined their effects in cell cycle progression by monitoring DNA synthesis. We found that microinjection of anti-Fos and anti-Jun family antibodies efficiently blocked the entrance to the S phase of serum-stimulated or asynchronously growing cells. However, the antibodies against single members of the Fos family only partially inhibited DNA synthesis. In contrast, all three Jun antibodies prevented DNA synthesis more effectively than did any of the anti-Fos antibodies.

Journal Article
TL;DR: These studies provide further evidence that DNA are not uniform in their immunologic activities likely because of their content of nonconserved structural determinants.
Abstract: Although DNA is generally considered to be a poor immunogen, recent evidence suggests that DNA from various species differ in their immunologic activity and that bacterial DNA, unlike mammalian DNA, can induce significant antibody responses in mice. To explore further the immunologic activities of bacterial DNA, its ability to stimulate in vitro proliferation of murine lymphocytes was tested. The stimulation of lymphocytes with highly purified ssDNA from Escherichia coli resulted in a dose-dependent response that was maximal at 48 h. Several lines of evidence indicate that DNA, rather than endotoxin contamination, induced this response: 1) LPS at doses equivalent to those detected in the DNA preparation caused significantly less proliferation than the DNA; 2) the response to DNA was insensitive to polymyxin B; 3) pretreatment of DNA with DNase completely abrogated the response; and 4) DNA induced the proliferation of cells from endotoxin-resistant C3H/HeJ mice. Furthermore, although DNA from three different bacterial species induced proliferation, mammalian DNA from three species were nonmitogenic. Depletion of T cells from lymphocytes did not reduce proliferation, suggesting that bacterial DNA directly triggered B cell proliferation. These studies provide further evidence that DNA are not uniform in their immunologic activities likely because of their content of nonconserved structural determinants.

Journal Article
TL;DR: The results demonstrate that the regression of MCF-7 human mammary cancers in nude mice following estrogen ablation is due to a sequence of biochemical and morphological changes that result in both the cessation of cell proliferation and activation of programmed death or apoptosis of these MCf-7 cancer cells.
Abstract: To study the mechanism of regression of human mammary cancer following estrogen ablation, estrogen-responsive MCF-7 human mammary adenocarcinoma cells were inoculated into ovariectomized female nude mice supplemented with exogenous 17 beta-estradiol (E2) via an E2 implant. Implants were then removed when MCF-7 tumors were 400 mm3 in size. Removal of the E2 implants resulted in a 50% tumor regression by 2 weeks following E2 ablation. Associated with this regression is a rapid (i.e., within 1 day following E2 ablation) enhanced expression of the transforming growth factor beta 1 and TRPM-2-genes, two genes the expression of which has been previously demonstrated to be enhanced in a variety of cell types induced to undergo programmed cell death (i.e., apoptosis). The enhanced expression of transforming growth factor beta 1 and TRPM-2 is not a nonspecific response since the expression of other genes, like c-fos, c-H-ras, and pS2, decrease following E2 ablation. Fragmentation of tumor DNA into nucleosomal oligomers and histological appearance of apoptotic bodies are characteristic early events that precede the dramatic reduction in tumor volume following E2 ablation. These results demonstrate that the regression of MCF-7 human mammary cancers in nude mice following estrogen ablation is due to a sequence of biochemical and morphological changes that result in both the cessation of cell proliferation and activation of programmed death or apoptosis of these MCF-7 cancer cells. Clarification of the biochemical pathway involved in the activation of this programmed cell death should identify new targets of therapy for even estrogen-independent human mammary cancer cells.

Journal ArticleDOI
TL;DR: It is reported here that tryptase, a trypsin-like serine proteinase of mast cell secretory granules, is a potent mitogen for fibroblasts in vitro and may provide a molecular link between mast cell activation and fibrosis.
Abstract: Mast cells appear to promote fibroblast proliferation, presumably through secretion of growth factors, although the molecular mechanisms underlying this mitogenic potential have not been explained fully by known mast cell-derived mediators. We report here that tryptase, a trypsin-like serine proteinase of mast cell secretory granules, is a potent mitogen for fibroblasts in vitro. Nanomolar concentrations of dog tryptase strongly stimulate thymidine incorporation in Chinese hamster lung and Rat-1 fibroblasts and increase cell density in both subconfluent and confluent cultures of these cell lines. Tryptase-induced cell proliferation appears proteinase-specific, as this response is not mimicked by pancreatic trypsin or mast cell chymase. In addition, low levels of tryptase markedly potentiate DNA synthesis stimulated by epidermal growth factor, basic fibroblast growth factor, or insulin. Inhibitors of catalytic activity decrease the mitogenic capacity of tryptase, suggesting, though not proving, the participation of the catalytic site in cell activation by tryptase. Differences in Ca++ mobilization and sensitivity to pertussis toxin suggest that tryptase and thrombin activate distinct signal transduction pathways in fibroblasts. These data implicate mast cell tryptase as a potent, previously unrecognized fibroblast growth factor, and may provide a molecular link between mast cell activation and fibrosis.

Journal ArticleDOI
TL;DR: Observations are consistent with the proposal that during development of the rat sciatic nerve cAMP elevation, possibly induced by axon-associated factors, is a primary signal responsible for the induction of 04 expression in proliferating Schwann cells during the premyelination period.
Abstract: The present experiments were designed to clarify the relationship between cAMP elevation, proliferation and differentiation in Schwann cells. They were carried out on short-term cultures of cells obtained from neonatal rat sciatic nerves. It was found that the myelin-related phenotype was expressed in response to agents that elevate or mimic intracellular cAMP (forskolin, cholera toxin, cAMP analogues), provided cell division was absent. This phenotype included upregulation of the major myelin protein P0 and downregulation of GFAP, N-CAM, A5E3, and NGF receptor. In contrast, when cells were cultured in conditions where cell division occurred, elevation of intracellular cAMP produced an alternative response, characterized by DNA synthesis and absence of myelin-related differentiation. The cAMP mediated induction of an early Schwann cell antigen, 04, followed a different pattern since it was induced equally in dividing and nondividing cells. These observations are consistent with the proposal that during development of the rat sciatic nerve: (a) cAMP elevation, possibly induced by axon-associated factors, is a primary signal responsible for the induction of 04 expression in proliferating Schwann cells during the premyelination period; (b) subsequent withdrawal of cells associated with the larger axons from the cell cycle acts as a permissive secondary signal for induction of myelination, since in quiescent cells the ongoing cAMP elevation will trigger myelination.

Journal ArticleDOI
TL;DR: Mutational analyses of the G‐CSF receptor in FDC‐P1 cells indicated that the N‐terminal half of the CRH domain was essential for the recognition of G‐ CSF, but the Ig‐like, FNIII and cytoplasmic domains were not.
Abstract: The granulocyte colony-stimulating factor (G-CSF) receptor has a composite structure consisting of an immunoglobulin(Ig)-like domain, a cytokine receptor-homologous (CRH) domain and three fibronectin type III (FNIII) domains in the extracellular region. Introduction of G-CSF receptor cDNA into IL-3-dependent murine myeloid cell line FDC-P1 and pro-B cell line BAF-B03, which normally do not respond to G-CSF, enabled them to proliferate in response to G-CSF. On the other hand, expression of the G-CSF receptor cDNA in the IL-2-dependent T cell line CTLL-2 did not enable it to grow in response to G-CSF, although G-CSF could transiently stimulate DNA synthesis. Mutational analyses of the G-CSF receptor in FDC-P1 cells indicated that the N-terminal half of the CRH domain was essential for the recognition of G-CSF, but the Ig-like, FNIII and cytoplasmic domains were not. The CRH domain and a portion of the cytoplasmic domain of about 100 amino acids in length were indispensable for transduction of the G-CSF-triggered growth signal.

Journal ArticleDOI
TL;DR: It is demonstrated thatSCF can induce the expansion of both CTMC and MMC populations in vivo and show that SCF can regulate at least one cellular lineage that expresses c-kit, the mast cell, through complex effects on proliferation and maturation.
Abstract: Mast cell development is a complex process that results in the appearance of phenotypically distinct populations of mast cells in different anatomical sites. Mice homozygous for mutations at the W or S1 locus exhibit several phenotypic abnormalities, including a virtual absence of mast cells in all organs and tissues. Recent work indicates that W encodes the c-kit tyrosine kinase receptor, whereas S1 encodes a c-kit ligand that we have designated stem cell factor (SCF). Recombinant or purified natural forms of the c-kit ligand induce proliferation of certain mast cell populations in vitro, and injection of recombinant SCF permits mast cells to develop in mast cell-deficient WCB6F1-S1/S1d mice. However, the effects of SCF on mast cell proliferation, maturation, and phenotype in normal mice in vivo were not investigated. We now report that local administration of SCF in vivo promotes the development of connective tissue-type mast cells (CTMC) in the skin of mice and that systemic administration of SCF induces the development of both CTMC and mucosal mast cells (MMC) in rats. Rats treated with SCF also develop significantly increased tissue levels of specific rat mast cell proteases (RMCP) characteristic of either CTMC (RMCP I) or MMC (RMCP II). These findings demonstrate that SCF can induce the expansion of both CTMC and MMC populations in vivo and show that SCF can regulate at least one cellular lineage that expresses c-kit, the mast cell, through complex effects on proliferation and maturation.

Journal ArticleDOI
TL;DR: HGF may play an important role as a paracrine or endocrine mediator through an epithelial-mesenchymal interaction in wound-healing, tissue or organ regeneration, morphogenesis and carcinogenesis.

Journal ArticleDOI
TL;DR: The data suggest that the LOV-induced G1 arrest may be a consequence of the loss of the signal transduction capacity of p21ras, and it is also possible that inhibition of isoprenylation of proteins other than p 21ras by LOV may be responsible for the observed suppression of growth of T24 cells.
Abstract: Lovastatin (LOV), the drug recently introduced to treat hypercholesteremia, inhibits the synthesis of mevalonic acid. The effects of LOV on the cell cycle progression of the human bladder carcinoma T24 cell line expressing activated p21ras were investigated. At a concentration of 2-10 microM, LOV arrested cells in G1 and also prolonged--or arrested a minor fraction of cells in--the G2 phase of the cell cycle; at a concentration of 50 microM, LOV was cytotoxic. The cytostatic effects were reversed by addition of exogenous mevalonate. Cells arrested in the cycle by LOV were viable for up to 72 hr and did not show any changes in RNA or protein content or chromatin condensation, which would be typical of either unbalanced growth or deep quiescence. The expression of the proliferation-associated nuclear proteins Ki-67 and p105 in these cells was reduced by up to 72% and 74%, respectively, compared with exponentially growing control cells. After removal of LOV, the cells resumed progression through the cycle; they entered S phase asynchronously after a lag of approximately 6 hr. Because mevalonate is essential for the posttranslational modification (isoprenylation) of p21ras, which in turn allows this protein to become attached to the cell membrane, the data suggest that the LOV-induced G1 arrest may be a consequence of the loss of the signal transduction capacity of p21ras. Indeed, while exposure of cells to LOV had no effect on the cellular content of p21ras (detected immunocytochemically), it altered the intracellular location of this protein, causing its dissociation from the cell membrane and translocation toward the cytoplasm and nucleus. However, it is also possible that inhibition of isoprenylation of proteins other than p21ras (e.g., nuclear lamins) by LOV may be responsible for the observed suppression of growth of T24 cells.

Journal Article
TL;DR: Findings suggest that UT-7 is a new leukemic cell line with megakaryocytic features and with the potential to differentiate into cells with more mature megakARYocytic properties in response to phorbol myristate acetate.
Abstract: A new human leukemia cell line with megakaryocytic features, designated UT-7, was established from the bone marrow of a patient with acute megakaryoblastic leukemia. Surface marker analysis revealed that the majority of the cells reacted with monoclonal antibodies against platelet glycoprotein Ib (CD42b), glycoprotein IIb/IIIa (CD41a), MY 7 (CD13), MY 9 (CD33), and glycophorin A antigens. Cytogenetic analysis showed a human male near-tetraploid karyotype with a modal chromosome number of 92-96. Flow cytometry-derived DNA histograms demonstrated that the majority of the cells spontaneously contained 4 N DNA ploidy levels. Ultrastructural study showed that platelet peroxidase activity was weakly positive but myeloperoxidase activity was negative. Ferritin and theta-granule, which have been used as ultrastructural markers for the erythroid lineage, could not be detected. In response to phorbol myristate acetate, platelet factor 4 and beta-thromboglobulin, which were specifically synthesized in the process of megakaryocyte maturation, dramatically increased in UT-7 cells. This was accompanied by an increase in cell size, ploidy level, platelet peroxidase activity, and the surface density of glycoprotein IIb/IIIa antigen. These findings suggest that UT-7 is a new leukemic cell line with megakaryocytic features and with the potential to differentiate into cells with more mature megakaryocytic properties in response to phorbol myristate acetate. This cell line showed strict dependency on interleukin 3 (IL-3), granulocyte-macrophage colony-stimulating factor, or erythropoietin. The maximal effective doses of IL-3, granulocyte-macrophage colony-stimulating factor, and erythropoietin for proliferation in liquid culture were 10 units/ml, 1 ng/ml, and 1 unit/ml, respectively. These concentrations were comparable to the doses that maximally stimulate the clonal growth of normal hemopoietic cells. IL-6 could stimulate the proliferation of UT-7 cells but not maintain the line in long-term culture. UT-7 cells may be a useful model for (a) the analysis of gene regulation of megakaryocytic maturation-associated proteins expressed in the process of megakaryocytic differentiation and (b) the study of signal transduction of hemopoietic factors associated with megakaryocytopoiesis.

Journal ArticleDOI
TL;DR: In vitro, the 20-epi-vitamin D3 analogues were found to be considerably more potent as regulators of growth and differentiation in the human histiocytic lymphoma cell line U 937 than 1 alpha,25(OH)2D3, despite a practically unchanged calcemic activity in vivo.

Journal Article
TL;DR: The preferential inhibition of mtDNA, compared with cell growth, by some of these anti-HIV nucleoside analogs correlates well with their ability to cause drug-limiting delayed toxicity, such as peripheral neuropathy, in patients.
Abstract: The anti-human immunodeficiency virus (-HIV) nucleoside analogs azidothymidine (AZT), dideoxycytidine (ddC), dideoxyinosine (ddl), dideoxydidehydrothymidine (D4T), and dideoxydidehydrocytidine (D4C) and the anticancer drug cytosine arabinoside (AraC) were compared for their effects on the mitochondrial DNA (mtDNA) content in a human lymphoblastoid cell line, CEM. The potency of these compounds in reducing mtDNA content was in the order of ddC greater than D4C greater than D4T greater than AZT greater than ddl. AraC did not have a significant effect on mtDNA content. All of the compounds tested, except AraC, stimulated lactic acid production at concentrations that inhibited mtDNA synthesis. The action of ddC and ddl occurred at concentrations that did not affect cell growth significantly in 4 days but retarded cell growth by day 6. D4T and D4C decreased mtDNA content by 50% at doses lower than those that inhibited cell growth by 50% in 4 days (ID50). However, AZT required a dose higher than the ID50 to exert similar effects on mtDNA content. The decrease of mtDNA content caused by ddC also occurred in nerve growth factor-treated PC12 cells, which differentiate to neuron-like cells upon treatment with nerve growth factor. The preferential inhibition of mtDNA, compared with cell growth, by some of these anti-HIV nucleoside analogs correlates well with their ability to cause drug-limiting delayed toxicity, such as peripheral neuropathy, in patients. These data suggest that the selective mitochondrial toxicity could be responsible for the delayed toxicity caused by these anti-HIV analogs.

Journal ArticleDOI
TL;DR: Time of cell origin in the retina of the rhesus monkey (Macaca mulatto) was studied by plotting the number of heavily radiolabeled nuclei in autoradiograms prepared from 2‐ to 6‐month‐old animals, each of which was exposed to a pulse of 3H‐thymidine on a single embryonic (E) or postnatal (P) day.
Abstract: Time of cell origin in the retina of the rhesus monkey (Macaca mulatta) was studied by plotting the number of heavily radiolabeled nuclei in autoradiograms prepared from 2- to 6-month-old animals, each of which was exposed to a pulse of 3H-thymidine (3H-TdR) on a single embryonic (E) or postnatal (P) day. Cell birth in the monkey retina begins just after E27, and approximately 96% of cells are generated by E120. The remaining cells are produced during the last (approximately 45) prenatal days and into the first several weeks after birth. Cell genesis begins near the fovea, and proceeds towards the periphery. Cell division largely ceases in the foveal and perifoveal regions by E56. Despite extensive overlap, a class-specific sequence of cell birth was observed. Ganglion and horizontal cells, which are born first, have largely congruent periods of cell genesis with the peak between E38 and E43, and termination around E70. The first labeled cones were apparent by E33, and their highest density was achieved between E43 and E56, tapering to low values at E70, although some cones are generated in the far periphery as late as E110. Amacrine cells are next in the cell birth sequence and begin genesis at E43, reach a peak production between E56 and E85, and cease by E110. Bipolar cell birth begins at the same time as amacrines, but appears to be separate from them temporally since their production reaches a peak between E56 and E102, and persists beyond the day of birth. Muller cells and rod photoreceptors, which begin to be generated at E45, achieve a peak, and decrease in density at the same time as bipolar cells, but continue genesis at low density on the day of birth. Thus, bipolar, Muller, and rod cells have a similar time of origin. The maximal temporal separation of cell birth is between cones and amacrine cells so that cell generation exhibits two relatively distinct phases: the first phase gives rise to ganglion, horizontal, and cone cells, and the second phase to amacrine, bipolar, rod, and Muller cells. In addition, cells of the first phase are generated faster than the second phase cells, and there are differences in the topography of spread of labeled cells between the two phases. Each cell class displays a central-to-peripheral gradient in genesis, although the spatiotemporal characteristics of the gradients differ between the classes.(ABSTRACT TRUNCATED AT 400 WORDS)

Journal ArticleDOI
TL;DR: Two biological actions of transforming growth factor beta 1 are described in primary cultures of rabbit uterine epithelial cells, suggesting that proliferation and apoptosis together comprise normal cell growth regulation.
Abstract: Cell and tissue growth is regulated through a complex interplay of stimulatory and inhibitory signals. We describe two biological actions of transforming growth factor beta 1 (TGF-beta 1) in primary cultures of rabbit uterine epithelial cells: (i) inhibition of cell proliferation and (ii) a concomitant increase in cells undergoing apoptosis (programmed cell death). It is proposed that proliferation and apoptosis together comprise normal cell growth regulation.

Book ChapterDOI
01 Jan 1991
TL;DR: Many processes are included within the scope of the term matrix degradation as mentioned in this paper, such as matrix degradation is also a part of invasive cellular migration, when cells displace gels of interstitial molecules or cross basement membranes, the natural barriers to cell migration.
Abstract: Many processes are included within the scope of the term matrix degradation Specialized matrices such as bone and cartilage, which provide structural support for the animal, are dynamic structures that resorb or expand in response to hormonal stimuli The enzymatic machinery for the degradation of large quantities of collagen and other matrix components must be under the appropriate transcriptional regulation in the controlling cell type Similarly, if a whole organ or tissue is removed, such as during uterine and mammary involution, enzymes are required that are capable of lysing basement membranes and interstitial matrix and processing cellular debris so that all the components can be absorbed by scavenging cell types Matrix degradation is also a part of invasive cellular migration, when cells displace gels of interstitial molecules or cross basement membranes, the natural barriers to cell migration In contrast to the involution reaction, lysis associated with cell motility is a limited reaction that leaves the bulk of the matrix intact and is directed only at the “structural kingpins,” those molecules that constitute a barrier to cell displacement Cell growth, division, and expansion also demand flexibility in the growth matrix, such as that associated with tissue regeneration and during development Matrix is also a reservoir of growth factors and possible morphogens, and rather specific cleavage reactions directed against carrier molecules like vitronectin and heparan sulfate may have a role in determining the course of further cell growth and proteolysis

Journal ArticleDOI
TL;DR: It is demonstrated here that human melanocytes could be regulated by endothelin (ET) derivatives, potent vasoconstrictive peptides synthesized by endothelial cells, to stimulate their proliferation and melanization via a receptor-mediated signal transduction pathway.