scispace - formally typeset
Search or ask a question

Showing papers on "Cell growth published in 2000"


Journal ArticleDOI
TL;DR: Although the Ki‐67 protein is well characterized on the molecular level and extensively used as a proliferation marker, the functional significance still remains unclear; there are indications, however, that Ki‐ 67 protein expression is an absolute requirement for progression through the cell‐division cycle.
Abstract: The expression of the human Ki-67 protein is strictly associated with cell proliferation. During interphase, the antigen can be exclusively detected within the nucleus, whereas in mitosis most of the protein is relocated to the surface of the chromosomes. The fact that the Ki-67 protein is present during all active phases of the cell cycle (G(1), S, G(2), and mitosis), but is absent from resting cells (G(0)), makes it an excellent marker for determining the so-called growth fraction of a given cell population. In the first part of this study, the term proliferation marker is discussed and examples of the applications of anti-Ki-67 protein antibodies in diagnostics of human tumors are given. The fraction of Ki-67-positive tumor cells (the Ki-67 labeling index) is often correlated with the clinical course of the disease. The best-studied examples in this context are carcinomas of the prostate and the breast. For these types of tumors, the prognostic value for survival and tumor recurrence has repeatedly been proven in uni- and multivariate analysis. The preparation of new monoclonal antibodies that react with the Ki-67 equivalent protein from rodents now extends the use of the Ki-67 protein as a proliferation marker to laboratory animals that are routinely used in basic research. The second part of this review focuses on the biology of the Ki-67 protein. Our current knowledge of the Ki-67 gene and protein structure, mRNA splicing, expression, and cellular localization during the cell-division cycle is summarized and discussed. Although the Ki-67 protein is well characterized on the molecular level and extensively used as a proliferation marker, the functional significance still remains unclear. There are indications, however, that Ki-67 protein expression is an absolute requirement for progression through the cell-division cycle.

4,359 citations


Journal ArticleDOI
13 Oct 2000-Cell
TL;DR: Findings reveal that the target of rapamycin TOR controls an unusually abundant and diverse set of readouts all of which are important for cell growth, suggesting that this conserved kinase is such a central regulator.

1,982 citations


Journal ArticleDOI
01 Sep 2000-Blood
TL;DR: The results suggest that adiponectin is an important negative regulator in hematopoiesis and immune systems and raise the possibility that it may be involved in ending inflammatory responses through its inhibitory functions.

1,513 citations


Journal ArticleDOI
06 Jul 2000-Nature
TL;DR: It is shown that disruption of the murine GSK-3β gene results in embryonic lethality caused by severe liver degeneration during mid-gestation, a phenotype consistent with excessive tumour necrosis factor (TNF) toxicity, as observed in mice lacking genes involved in the activation of the transcription factor activation NF-κB.
Abstract: Glycogen synthase kinase-3 (GSK-3)-α and -β are closely related protein-serine kinases, which act as inhibitory components of Wnt signalling during embryonic development and cell proliferation in adult tissues1,2. Insight into the physiological function of GSK-3 has emerged from genetic analysis in Drosophila3,4, Dictyostelium 5 and yeast6,7. Here we show that disruption of the murine GSK-3β gene results in embryonic lethality caused by severe liver degeneration during mid-gestation, a phenotype consistent with excessive tumour necrosis factor (TNF) toxicity, as observed in mice lacking genes involved in the activation of the transcription factor activation NF-κB. GSK-3β-deficient embryos were rescued by inhibition of TNF using an anti-TNF-α antibody. Fibroblasts from GSK-3β-deficient embryos were hypersensitive to TNF-α and showed reduced NF-κB function. Lithium treatment (which inhibits GSK-3; refs 8, 9) sensitized wild-type fibroblasts to TNF and inhibited transactivation of NF-κB. The early steps leading to NF-κB activation (degradation of I-κB and translocation of NF-κB to the nucleus) were unaffected by the loss of GSK-3β, indicating that NF-κB is regulated by GSK-3β at the level of the transcriptional complex. Thus, GSK-3β facilitates NF-κB function.

1,335 citations


Journal ArticleDOI
15 May 2000-Oncogene
TL;DR: Since the IL-6/gp130/STAT3 signaling pathway is involved in both B cell growth and differentiation into plasma cells it is likely to play a central role in the generation of plasma cell neoplasias.
Abstract: Members of the IL-6 cytokine family are involved in a variety of biological responses, including the immune response, inflammation, hematopoiesis, and oncogenesis by regulating cell growth, survival, and differentiation. These cytokines use gp130 as a common receptor subunit. The binding of ligand to gp130 activates the JAK/STAT signal transduction pathway, where STAT3 plays a central role in transmitting the signals from the membrane to the nucleus. STAT3 is essential for gp130-mediated cell survival and G1 to S cell-cycle-transition signals. Both c-myc and pim have been identified as target genes of STAT3 and together can compensate for STAT3 in cell survival and cell-cycle transition. STAT3 is also required for gp130-mediated maintenance of the pluripotential state of proliferating embryonic stem cells and for the gp130-induced macrophage differentiation of M1 cells. Furthermore, STAT3 regulates cell movement, such as leukocyte, epidermal cell, and keratinocyte migration. STAT3 also appears to regulate B cell differentiation into antibody-forming plasma cells. Since the IL-6/gp130/STAT3 signaling pathway is involved in both B cell growth and differentiation into plasma cells it is likely to play a central role in the generation of plasma cell neoplasias.

1,157 citations


Journal ArticleDOI
TL;DR: It is suggested that VEGF receptor signaling is required for maintenance of theAlveolar structures and, further, that alveolar septal cell apoptosis contributes to the pathogenesis of emphysema.
Abstract: Pulmonary emphysema, a significant global health problem, is characterized by a loss of alveolar structures. Because VEGF is a trophic factor required for the survival of endothelial cells and is abundantly expressed in the lung, we hypothesized that chronic blockade of VEGF receptors could induce alveolar cell apoptosis and emphysema. Chronic treatment of rats with the VEGF receptor blocker SU5416 led to enlargement of the air spaces, indicative of emphysema. The VEGF receptor inhibitor SU5416 induced alveolar septal cell apoptosis but did not inhibit lung cell proliferation. Viewed by angiography, SU5416-treated rat lungs showed a pruning of the pulmonary arterial tree, although we observed no lung infiltration by inflammatory cells or fibrosis. SU5416 treatment led to a decrease in lung expression of VEGF receptor 2 (VEGFR-2), phosphorylated VEGFR-2, and Akt-1 in the complex with VEGFR-2. Treatment with the caspase inhibitor Z-Asp-CH2-DCB prevented SU5416-induced septal cell apoptosis and emphysema development. These findings suggest that VEGF receptor signaling is required for maintenance of the alveolar structures and, further, that alveolar septal cell apoptosis contributes to the pathogenesis of emphysema.

1,107 citations


Journal ArticleDOI
TL;DR: Some of the molecular and cellular events initiated by cell stress-the interrelationships between stress signaling, cell death, and oncogenesis-and chaperones as potential targets for cancer diagnosis and treatment are addressed.
Abstract: Exposure of cells to conditions of environmental stress-including heat shock, oxidative stress, heavy metals, or pathologic conditions, such as ischemia and reperfusion, inflammation, tissue damage, infection, and mutant proteins associated with genetic diseases-results in the inducible expression of heat shock proteins that function as molecular chaperones or proteases. Molecular chaperones are a class of proteins that interact with diverse protein substrates to assist in their folding, with a critical role during cell stress to prevent the appearance of folding intermediates that lead to misfolded or otherwise damaged molecules. Consequently, heat shock proteins assist in the recovery from stress either by repairing damaged proteins (protein refolding) or by degrading them, thus restoring protein homeostasis and promoting cell survival. The events of cell stress and cell death are linked, such that molecular chaperones induced in response to stress appear to function at key regulatory points in the control of apoptosis. On the basis of these observations-and on the role of molecular chaperones in the regulation of steroid aporeceptors, kinases, caspases, and other protein remodeling events involved in chromosome replication and changes in cell structure-it is not surprising that the heat shock response and molecular chaperones have been implicated in the control of cell growth. In this review, we address some of the molecular and cellular events initiated by cell stress-the interrelationships between stress signaling, cell death, and oncogenesis-and chaperones as potential targets for cancer diagnosis and treatment.

1,048 citations


Journal ArticleDOI
TL;DR: The genes that displayed an expression profile most similar to endogenous Myc in microarray-based expression profiling of myeloid differentiation models were highly enriched for MYC target genes.
Abstract: MYC affects normal and neoplastic cell proliferation by altering gene expression, but the precise pathways remain unclear. We used oligonucleotide microarray analysis of 6,416 genes and expressed sequence tags to determine changes in gene expression caused by activation of c-MYC in primary human fibroblasts. In these experiments, 27 genes were consistently induced, and 9 genes were repressed. The identity of the genes revealed that MYC may affect many aspects of cell physiology altered in transformed cells: cell growth, cell cycle, adhesion, and cytoskeletal organization. Identified targets possibly linked to MYC's effects on cell growth include the nucleolar proteins nucleolin and fibrillarin, as well as the eukaryotic initiation factor 5A. Among the cell cycle genes identified as targets, the G1 cyclin D2 and the cyclin-dependent kinase binding protein CksHs2 were induced whereas the cyclin-dependent kinase inhibitor p21(Cip1) was repressed. A role for MYC in regulating cell adhesion and structure is suggested by repression of genes encoding the extracellular matrix proteins fibronectin and collagen, and the cytoskeletal protein tropomyosin. A possible mechanism for MYC-mediated apoptosis was revealed by identification of the tumor necrosis factor receptor associated protein TRAP1 as a MYC target. Finally, two immunophilins, peptidyl-prolyl cis-trans isomerase F and FKBP52, the latter of which plays a role in cell division in Arabidopsis, were up-regulated by MYC. We also explored pattern-matching methods as an alternative approach for identifying MYC target genes. The genes that displayed an expression profile most similar to endogenous Myc in microarray-based expression profiling of myeloid differentiation models were highly enriched for MYC target genes.

849 citations


Journal ArticleDOI
Jianyuan Luo1, Fei Su1, Delin Chen1, Ariel L. Shiloh1, Wei Gu1 
16 Nov 2000-Nature
TL;DR: The results show that deacetylation and functional interactions by the PID/MTA2-associated NuRD complex may represent an important pathway to regulate p53 function.
Abstract: The p53 tumour suppressor is a transcriptional factor whose activity is modulated by protein stability and post-translational modifications including acetylation. The mechanism by which acetylated p53 is maintained in vivo remains unclear. Here we show that the deacetylation of p53 is mediated by an histone deacetylase-1 (HDAC1)-containing complex. We have also purified a p53 target protein in the deacetylase complexes (designated PID; but identical to metastasis-associated protein 2 (MTA2)), which has been identified as a component of the NuRD complex. PID specifically interacts with p53 both in vitro and in vivo, and its expression reduces significantly the steady-state levels of acetylated p53. PID expression strongly represses p53-dependent transcriptional activation, and, notably, it modulates p53-mediated cell growth arrest and apoptosis. These results show that deacetylation and functional interactions by the PID/MTA2-associated NuRD complex may represent an important pathway to regulate p53 function.

814 citations


Journal ArticleDOI
TL;DR: Evidence suggests that reduced zinc availability affects membrane signaling systems and intracellular second messengers that coordinate cell proliferation in response to IGF-I, and may directly regulate DNA synthesis through these systems.
Abstract: The inhibition of growth is a cardinal symptom of zinc deficiency. In animals fed a zinc-inadequate diet, both food intake and growth are reduced within 4-5 d. Despite the concomitant reduction in food intake and growth, reduced energy intake is not the limiting factor in growth, because force-feeding a zinc-inadequate diet to animals fails to maintain growth. Hence, food intake and growth appear to be regulated by zinc through independent, although well coordinated, mechanisms. Despite the long-term study of zinc metabolism, the first limiting role of zinc in cell proliferation remains undefined. Zinc participates in the regulation of cell proliferation in several ways; it is essential to enzyme systems that influence cell division and proliferation. Removing zinc from the extracellular milieu results in decreased activity of deoxythymidine kinase and reduced levels of adenosine(5')tetraphosphate(5')-adenosine. Hence, zinc may directly regulate DNA synthesis through these systems. Zinc also influences hormonal regulation of cell division. Specifically, the pituitary growth hormone (GH)-insulin-like growth factor-I (IGF-I) axis is responsive to zinc status. Both increased and decreased circulating concentrations of GH have been observed in zinc deficiency, although circulating IGF-I concentrations are consistently decreased. However, growth failure is not reversed by maintaining either GH or IGF-I levels through exogenous administration, which suggests the defect occurs in hormone signaling. Zinc appears to be essential for IGF-I induction of cell proliferation; the site of regulation is postreceptor binding. Overall, the evidence suggests that reduced zinc availability affects membrane signaling systems and intracellular second messengers that coordinate cell proliferation in response to IGF-I.

790 citations


Journal ArticleDOI
TL;DR: It is proposed that ANT regulates cell proliferation and organ growth by maintaining the meristematic competence of cells during organogenesis.
Abstract: The control of cell proliferation during organogenesis plays an important role in initiation, growth, and acquisition of the intrinsic size of organs in higher plants. To understand the developmental mechanism that controls intrinsic organ size by regulating the number and extent of cell division during organogenesis, we examined the function of the Arabidopsis regulatory gene AINTEGUMENATA (ANT). Previous observations revealed that ANT regulates cell division in integuments during ovule development and is necessary for floral organ growth. Here we show that ANT controls plant organ cell number and organ size throughout shoot development. Loss of ANT function reduces the size of all lateral shoot organs by decreasing cell number. Conversely, gain of ANT function, via ectopic expression of a 35S::ANT transgene, enlarges embryonic and all shoot organs without altering superficial morphology by increasing cell number in both Arabidopsis and tobacco plants. This hyperplasia results from an extended period of cell proliferation and organ growth. Furthermore, cells ectopically expressing ANT in fully differentiated organs exhibit neoplastic activity by producing calli and adventitious roots and shoots. Based on these results, we propose that ANT regulates cell proliferation and organ growth by maintaining the meristematic competence of cells during organogenesis.

Journal ArticleDOI
20 Apr 2000-Nature
TL;DR: It is concluded that inhibition of NF-κB in tumours that retain wild-type p53 may diminish, rather than augment, a therapeutic response.
Abstract: The tumour suppressor p53 inhibits cell growth through activation of cell-cycle arrest and apoptosis1, and most cancers have either mutation within the p53 gene or defects in the ability to induce p53. Activation or re-introduction of p53 induces apoptosis in many tumour cells and may provide effective cancer therapy2. One of the key proteins that modulates the apoptotic response is NF-κB, a transcription factor that can protect or contribute to apoptosis3. Here we show that induction of p53 causes an activation of NF-κB that correlates with the ability of p53 to induce apoptosis. Inhibition or loss of NF-κB activity abrogated p53-induced apoptosis, indicating that NF-κB is essential in p53-mediated cell death. Activation of NF-κB by p53 was distinct from that mediated by tumour-necrosis factor-α and involved MEK1 and the activation of pp90rsk. Inhibition of MEK1 blocked activation of NF-κB by p53 and completely abrogated p53-induced cell death. We conclude that inhibition of NF-κB in tumours that retain wild-type p53 may diminish, rather than augment, a therapeutic response.

Journal ArticleDOI
TL;DR: Ascorbate-deficient vtc 1 mutants of Arabidopsis thaliana have been found to have a higher susceptibility to ozone and UV-B radiation, and the rapid response of ascorbates peroxidase expression to (photo)-oxidative stress.
Abstract: Ascorbic acid (vitamin C) is an abundant component of plants. It reaches a concentration of over 20 mM in chloroplasts and occurs in all cell compartments, including the cell wall. It has proposed functions in photosynthesis as an enzyme cofactor (including synthesis of ethylene, gibberellins and anthocyanins) and in control of cell growth. A biosynthetic pathway via GDP-mannose, GDP-L-galactose, L-galactose, and L-galactono-1,4-lactone has been proposed only recently and is supported by molecular genetic evidence from the ascorbate-deficient vtc 1 mutant of Arabidopsis thaliana. Other pathways via uronic acids could provide minor sources of ascorbate. Ascorbate, at least in some species, is a precursor of tartrate and oxalate. It has a major role in photosynthesis, acting in the Mehler peroxidase reaction with ascorbate peroxidase to regulate the redox state of photosynthetic electron carriers and as a cofactor for violaxanthin de-epoxidase, an enzyme involved in xanthophyll cycle-mediated photoprotection. The hypersensitivity of some of the vtc mutants to ozone and UV-B radiation, the rapid response of ascorbate peroxidase expression to (photo)-oxidative stress, and the properties of transgenic plants with altered ascorbate peroxidase activity all support an important antioxidative role for ascorbate. In relation to cell growth, ascorbate is a cofactor for prolyl hydroxylase that posttranslationally hydroxylates proline residues in cell wall hydroxyproline-rich glycoproteins required for cell division and expansion. Additionally, high ascorbate oxidase activity in the cell wall is correlated with areas of rapid cell expansion. It remains to be determined if this is a causal relationship and, if so, what is the mechanism. Identification of the biosynthetic pathway now opens the way to manipulating ascorbate biosynthesis in plants, and, along with the vtc mutants, this should contribute to a deeper understanding of the proposed functions of this multifaceted molecule.

Journal ArticleDOI
J.D. Norton1
TL;DR: An emerging 'molecular promiscuity' of mammalian ID proteins is revealed: they directly interact with and modulate the activities of several other families of transcriptional regulator, besides bHLH proteins.
Abstract: The ubiquitously expressed family of ID helix-loop-helix (HLH) proteins function as dominant negative regulators of basic HLH (bHLH) transcriptional regulators that drive cell lineage commitment and differentiation in metazoa. Recent data from cell line and in vivo studies have implicated the functions of ID proteins in other cellular processes besides negative regulation of cell differentiation. ID proteins play key roles in the regulation of lineage commitment, cell fate decisions and in the timing of differentiation during neurogenesis, lymphopoiesis and neovascularisation (angiogenesis). They are essential for embryogenesis and for cell cycle progression, and they function as positive regulators of cell proliferation. ID proteins also possess pro-apoptotic properties in a variety of cell types and function as cooperating or dominant oncoproteins in immortalisation of rodent and human cells and in tumour induction in Id-transgenic mice. In several human tumour types, the expression of ID proteins is deregulated, and loss- and gain-of-function studies implicate ID functions in the regulation of tumour growth, vascularisation, invasiveness and metastasis. More recent biochemical studies have also revealed an emerging 'molecular promiscuity' of mammalian ID proteins: they directly interact with and modulate the activities of several other families of transcriptional regulator, besides bHLH proteins.

Journal Article
TL;DR: The results suggest that hydroxamic acid-based hybrid polar compounds inhibit prostate cancer cell growth and may be useful, relatively nontoxic agents for the treatment of prostate carcinoma.
Abstract: Suberoylanilide hydroxamic acid (SAHA) is the prototype of a family of hybrid polar compounds that induce growth arrest in transformed cells and show promise for the treatment of cancer. SAHA induces differentiation and/or apoptosis in certain transformed cells in culture and is a potent inhibitor of histone deacetylases. In this study, we examined the effects of SAHA on the growth of human prostate cancer cells in culture and on the growth of the CWR22 human prostate xenograft in nude mice. SAHA suppressed the growth of the LNCaP, PC-3, and TSU-Pr1 cell lines at micromolar concentrations (2.5-7.5 microM). SAHA induced dose-dependent cell death in the LNCaP cells. In mice with transplanted CWR222 human prostate tumors, SAHA (25, 50, and 100 mg/kg/day) caused significant suppression of tumor growth compared with mice receiving vehicle alone; treatment with 50 mg/kg/day resulted in a 97% reduction in the mean final tumor volume compared with controls. At this dose, there was no detectable toxicity as evaluated by weight gain and necropsy examination. Increased accumulation of acetylated core histones was detected in the CWR22 tumors within 6 h of SAHA administration. SAHA induced prostate-specific antigen mRNA expression in CWR22 prostate cancer cells, resulting in higher levels of serum prostate-specific antigen than predicted from tumor volume alone. The results suggest that hydroxamic acid-based hybrid polar compounds inhibit prostate cancer cell growth and may be useful, relatively nontoxic agents for the treatment of prostate carcinoma.

Journal ArticleDOI
TL;DR: The results suggest that dTOR regulates growth during animal development by coupling growth factor signaling to nutrient availability and overexpression of p70 S6 kinase in vivo can rescue dTOR mutant animals to viability.
Abstract: The TOR protein kinases (TOR1 and TOR2 in yeast; mTOR/FRAP/RAFT1 in mammals) promote cellular proliferation in response to nutrients and growth factors, but their role in development is poorly understood. Here, we show that the Drosophila TOR homolog dTOR is required cell autonomously for normal growth and proliferation during larval development, and for increases in cellular growth caused by activation of the phosphoinositide 3-kinase (PI3K) signaling pathway. As in mammalian cells, the kinase activity of dTOR is required for growth factor-dependent phosphorylation of p70 S6 kinase (p70S6K) in vitro, and we demonstrate that overexpression of p70S6K in vivo can rescue dTOR mutant animals to viability. Loss of dTOR also results in cellular phenotypes characteristic of amino acid deprivation, including reduced nucleolar size, lipid vesicle aggregation in the larval fat body, and a cell type-specific pattern of cell cycle arrest that can be bypassed by overexpression of the S-phase regulator cyclin E. Our results suggest that dTOR regulates growth during animal development by coupling growth factor signaling to nutrient availability.

Journal ArticleDOI
TL;DR: It is demonstrated that responses to substrate rigidity play a major role in distinguishing the growth behavior of normal cells from that of transformed cells, and that proper mechanical feedback is required for regulating cell shape, cell growth, and survival.
Abstract: One of the hallmarks of oncogenic transformation is anchorage-independent growth (27). Here we demonstrate that responses to substrate rigidity play a major role in distinguishing the growth behavior of normal cells from that of transformed cells. We cultured normal or H-ras-transformed NIH 3T3 cells on flexible collagen-coated polyacrylamide substrates with similar chemical properties but different rigidity. Compared with cells cultured on stiff substrates, nontransformed cells on flexible substrates showed a decrease in the rate of DNA synthesis and an increase in the rate of apoptosis. These responses on flexible substrates are coupled to decreases in cell spreading area and traction forces. In contrast, transformed cells maintained their growth and apoptotic characteristics regardless of substrate flexibility. The responses in cell spreading area and traction forces to substrate flexibility were similarly diminished. Our results suggest that normal cells are capable of probing substrate rigidity and that proper mechanical feedback is required for regulating cell shape, cell growth, and survival. The loss of this response can explain the unregulated growth of transformed cells.

Journal ArticleDOI
TL;DR: Computer simulations based on dynamic Boolean networks are used to show that the different cell fates that a particular cell can exhibit may represent a preprogrammed set of common end programs or "attractors" which self-organize within the cell's regulatory networks.

Journal ArticleDOI
TL;DR: The results confirm the essential role of the Rb family in the control of the G(1)/S transition, place the three R b family members downstream of multiple cell cycle control pathways, and further the link between loss of cell cycle Control and tumorigenesis.
Abstract: The retinoblastoma protein, pRB, and the closely related proteins p107 and p130 are important regulators of the mammalian cell cycle. Biochemical and genetic studies have demonstrated overlapping as well as distinct functions for the three proteins in cell cycle control and mouse development. However, the role of the pRB family as a whole in the regulation of cell proliferation, cell death, or cell differentiation is not known. We generated embryonic stem (ES) cells and other cell types mutant for all three genes. Triple knock-out mouse embryonic fibroblasts (TKO MEFs) had a shorter cell cycle than wild-type, single, or double knock-out control cells. TKO cells were resistant to G1 arrest following DNA damage, despite retaining functional p53 activity. They were also insensitive to G1 arrest signals following contact inhibition or serum starvation. Finally, TKO MEFs did not undergo senescence in culture and do possess some characteristics of transformed cells. Our results confirm the essential role of the Rb family in the control of the G1/S transition, place the three Rb family members downstream of multiple cell cycle control pathways, and further the link between loss of cell cycle control and tumorigenesis.

Journal ArticleDOI
03 Feb 2000-Oncogene
TL;DR: In this paper, the internal tandem duplication of the human Flt3 gene in approximately 20% of acute myeloid leukemia (AML) cases was identified, and the wild-type and the mutant FLt3 genes were transfected into two IL-3-dependent cell lines, 32D and BA/F3 cells.
Abstract: We have recently identified an internal tandem duplication of the human Flt3 gene in approximately 20% of acute myeloid leukemia (AML) cases. In the present study, the wild-type and the mutant Flt3 genes were transfected into two IL-3-dependent cell lines, 32D and BA/F3 cells. Mutant Flt3-transfected cells exhibited autonomous growth while wild-type Flt3-transfected cells with the continuous stimulation of Flt3 ligand exhibited a minimal proliferation. Cells expressing mutant Flt3 showed constitutive activation of STAT5 and MAP kinase. In contrast, Flt3 ligand stimulation caused rapid activation of MAP kinase but not STAT5 in cells expressing wild-type Flt3. Finally, we found constitutive activation of MAP kinase and STAT5 in all clinical samples of AML patients with mutant Flt3. Our study shows the significance of internal tandem duplication of Flt3 receptors for leukemia cell expansion.

Journal ArticleDOI
TL;DR: Targeted disruption of Chk1 in mice showed that ChK1(-/-) embryos exhibit gross morphologic abnormalities in nuclei as early as the blastocyst stage, which may indicate that Chk 1 is indispensable for cell proliferation and survival through maintaining the G(2) checkpoint in mammals.
Abstract: The recent discovery of checkpoint kinases has suggested the conservation of checkpoint mechanisms between yeast and mammals. In yeast, the protein kinase Chk1 is thought to mediate signaling associated with the DNA damage checkpoint of the cell cycle. However, the function of Chk1 in mammals has remained unknown. Targeted disruption of Chk1 in mice showed that Chk1(-/-) embryos exhibit gross morphologic abnormalities in nuclei as early as the blastocyst stage. In culture, Chk1(-/-) blastocysts showed a severe defect in outgrowth of the inner cell mass and died of apoptosis. DNA replication block and DNA damage failed to arrest the cell cycle before initiation of mitosis in Chk1(-/-) embryos. These results may indicate that Chk1 is indispensable for cell proliferation and survival through maintaining the G(2) checkpoint in mammals.

Journal ArticleDOI
TL;DR: Perturbations in each level of the IGF axis have been implicated in cancer formation and progression in various cell types and are believed to occur through IGFBP‐3‐specific cell surface association proteins or receptors and involves nuclear translocation.
Abstract: Interest in the role of the insulin-like growth factor (IGF) axis in growth control and carcinogenesis has recently been increased by the finding of elevated serum insulin-like growth factor I (IGF-I) levels in association with three of the most prevalent cancers in the United States: prostate cancer, colorectal cancer, and lung cancer. IGFs serve as endocrine, autocrine, and paracrine stimulators of mitogenesis, survival, and cellular transformation. These actions are mediated through the type 1 IGF-receptor (IGF-1R), a tyrosine kinase that resembles the insulin receptor. The availability of free IGF for interaction with the IGF-1R is modulated by the insulin-like growth factor-binding proteins (IGFBPs). IGFBPs, especially IGFBP-3, also have IGF-independent effects on cell growth. IGF-independent growth inhibition by IGFBP-3 is believed to occur through IGFBP-3-specific cell surface association proteins or receptors and involves nuclear translocation. IGFBP-3-mediated apoptosis is controlled by numerous cell cycle regulators in both normal and disease processes. IGFBP activity is also regulated by IGFBP proteases, which affect the relative affinities of IGFBPs, IGFs and IGF-1R. Perturbations in each level of the IGF axis have been implicated in cancer formation and progression in various cell types.

Journal ArticleDOI
TL;DR: Translating the knowledge gained by studying the connection between cell death and cell proliferation may aid in identifying novel therapies to circumvent disease progression or improve clinical outcome.

Journal ArticleDOI
TL;DR: It is suggested that the cellular response to an ERK signal depends on bothERK signal intensity and duration, and studies showing that receptor tyrosine kinases and integrins differentially regulate the ERK signals in G1 phase are discussed.
Abstract: Growth factors and the extracellular matrix provide the environmental cues that control the proliferation of most cell types The binding of growth factors and matrix proteins to receptor tyrosine kinases and integrins, respectively, regulates several cytoplasmic signal transduction cascades, among which activation of the mitogen-activated protein kinase cascade, ras --> Raf --> MEK --> ERK, is perhaps the best characterized Curiously, ERK activation has been associated with both stimulation and inhibition of cell proliferation In this review, we summarize recent studies that connect ERK signaling to G1 phase cell cycle control and suggest that the cellular response to an ERK signal depends on both ERK signal intensity and duration We also discuss studies showing that receptor tyrosine kinases and integrins differentially regulate the ERK signal in G1 phase

Journal ArticleDOI
TL;DR: Results demonstrate that mVDUP1 functions as an oxidative stress mediator by inhibiting TRX activity.
Abstract: As a result of identifying the regulatory proteins of thioredoxin (TRX), a murine homologue for human vitamin D3 up-regulated protein 1 (VDUP1) was identified from a yeast two-hybrid screen. Cotransfection into 293 cells and precipitation assays confirmed that mouse VDUP1 (mVDUP1) bound to TRX, but it failed to bind to a Cys32 and Cys35 mutant TRX, suggesting the redox-active site is critical for binding. mVDUP1 was ubiquitously expressed in various tissues and located in the cytoplasm. Biochemical analysis showed that mVDUP1 inhibited the insulin-reducing activity of TRX. When cells were treated with various stress stimuli such as H2O2 and heat shock, mVDUP1 was significantly induced. TRX is known to interact with other proteins such as proliferation-associated gene and apoptosis signal-regulating kinase 1. Coexpression of mVDUP1 interfered with the interaction between TRX and proliferation-associated gene or TRX and ASK-1, suggesting its roles in cell proliferation and oxidative stress. To investigate the roles of mVDUP1 in oxidative stress, mVDUP1 was overexpressed in NIH 3T3 cells. When cells were exposed to stress, cell proliferation was declined with elevated apoptotic cell death compared with control cells. In addition, c-Jun N-terminal kinase activation and IL-6 expression were elevated. Taken together, these results demonstrate that mVDUP1 functions as an oxidative stress mediator by inhibiting TRX activity.

Journal ArticleDOI
TL;DR: The results suggest that the effects of p21 induction on gene expression in senescent cells may contribute to the pathogenesis of cancer and age-related diseases.
Abstract: Induction of cyclin-dependent kinase inhibitor p21(Waf1/Cip1/Sdi1) triggers cell growth arrest associated with senescence and damage response. Overexpression of p21 from an inducible promoter in a human cell line induces growth arrest and phenotypic features of senescence. cDNA array hybridization showed that p21 expression selectively inhibits a set of genes involved in mitosis, DNA replication, segregation, and repair. The kinetics of inhibition of these genes on p21 induction parallels the onset of growth arrest, and their reexpression on release from p21 precedes the reentry of cells into cell cycle, indicating that inhibition of cell-cycle progression genes is a mechanism of p21-induced growth arrest. p21 also up-regulates multiple genes that have been associated with senescence or implicated in age-related diseases, including atherosclerosis, Alzheimer's disease, amyloidosis, and arthritis. Most of the tested p21-induced genes were not activated in cells that had been growth arrested by serum starvation, but some genes were induced in both forms of growth arrest. Several p21-induced genes encode secreted proteins with paracrine effects on cell growth and apoptosis. In agreement with the overexpression of such proteins, conditioned media from p21-induced cells were found to have antiapoptotic and mitogenic activity. These results suggest that the effects of p21 induction on gene expression in senescent cells may contribute to the pathogenesis of cancer and age-related diseases.

Journal Article
TL;DR: It is reported that HER-2/neu activates Akt (protein kinase B) to promote prostate cancer cell survival and growth in the absence of androgen.
Abstract: HER-2/neu has been implicated in the activation of androgen receptor (AR) and in inducing hormone-independent prostate cancer growth. Here we report that HER-2/neu activates Akt (protein kinase B) to promote prostate cancer cell survival and growth in the absence of androgen. Blocking of the Akt pathway by a dominant-negative Akt or an inhibitor LY294002 abrogates the HER-2/neu-induced AR signaling and cell survival/growth effects in the absence or presence of androgen. Akt specifically binds to AR and phosphorylates serines 213 and 791 of AR. Thus, Akt is a novel activator of AR required for HER-2/neu signaling to androgen-independent survival and growth of prostate cancer cells.

Journal ArticleDOI
TL;DR: EGCG was found to impart differential dose-based NF-kappaB inhibitory response in cancer cells vs normal cells, and suggests that EGCG-caused cell cycle deregulation and apoptosis of cancer cells may be mediated through NF- kappaB inhibition.

Journal ArticleDOI
TL;DR: The signaling pathways that regulate polarity are discussed, which are probably ancient and conserved mechanisms for regulating polarity and coordinate cytoskeletal organization with the cell cycle.
Abstract: The ability to polarize is a fundamental property of cells. The yeast Saccharomyces cerevisiae has proven to be a fertile ground for dissecting the molecular mechanisms that regulate cell polarity during growth. Here we discuss the signaling pathways that regulate polarity. In the second installment of this two-part commentary, which appears in the next issue of Journal of Cell Science, we discuss how the actin cytoskeleton responds to these signals and guides the polarity of essentially all events in the yeast cell cycle. During the cell cycle, yeast cells assume alternative states of polarized growth, which range from tightly focused apical growth to non-focused isotropic growth. RhoGTPases, and in particular Cdc42p, are essential to guiding this polarity. The distribution of Cdc42p at the cell cortex establishes cell polarity. Cyclin-dependent protein kinase, Ras, and heterotrimeric G proteins all modulate yeast cell polarity in part by altering the distribution of Cdc42p. In turn, Cdc42p generates feedback signals to these molecules in order to establish stable polarity states and coordinate cytoskeletal organization with the cell cycle. Given that many of these signaling pathways are present in both fungi and animals, they are probably ancient and conserved mechanisms for regulating polarity.

Journal ArticleDOI
25 May 2000-Oncogene
TL;DR: Evidence support that Pik3CA is an oncogene in cervical cancer and PIK3CA amplification may be linked to cervical tumorigenesis.
Abstract: Amplification of chromosome arm 3q is the most consistent aberration in cervical cancer, and is implicated in the progression of dysplastic uterine cervical cells into invasive cancer. The present study employed the ‘positional candidate gene’ strategy to determine the contribution of PIK3CA, which is located in 3q26.3, in cervical tumorigenesis. PIK3CA is known to be involved in the PI 3-kinase/AKT signaling pathway, which plays an important role in regulating cell growth and apoptosis. The results of comparative genomic hybridization show that the 3q26.3 amplification was the most consistent chromosomal aberration in primary tissues of cervical carcinoma, and a positive correlation between an increased copy number of PIK3CA (detected by competitive PCR) and 3q26.3 amplification was found in tumor tissues and in cervical cancer cell lines. In cervical cancer cell lines harboring amplified PIK3CA, the expression of gene product (p110α) of PIK3CA was increased, and was subsequently associated with high kinase activity. In addition, transformation phenotypes in these lines, including increased cell growth and decreased apoptosis, were found to be significantly affected by the treatment of specific PI 3-kinase inhibitor, suggesting that increased expression of PIK3CA in cervical cancer may result in promoting cell proliferation and reducing apoptosis. These evidences support that PIK3CA is an oncogene in cervical cancer and PIK3CA amplification may be linked to cervical tumorigenesis.