scispace - formally typeset
Search or ask a question
Topic

Cell growth

About: Cell growth is a research topic. Over the lifetime, 104237 publications have been published within this topic receiving 3751303 citations. The topic is also known as: GO:0016049 & cellular growth.


Papers
More filters
Journal ArticleDOI
TL;DR: A better understanding of how cells utilize nutrients for biosynthetic pathways and how they overcome the metabolic challenges associated with high proliferation rates can lead to better control of cell proliferation and improved cancer treatments.
Abstract: Cellular metabolism is at the foundation of all biological activities. The catabolic processes that support cellular bioenergetics and survival have been well studied. By contrast, how cells alter their metabolism to support anabolic biomass accumulation is less well understood. During the commitment to cell proliferation, extensive metabolic rewiring must occur in order for cells to acquire sufficient nutrients such as glucose, amino acids, lipids and nucleotides, which are necessary to support cell growth and to deal with the redox challenges that arise from the increased metabolic activity associated with anabolic processes. Defining the mechanisms of this metabolic adaptation for cell growth and proliferation is now a major focus of research. Understanding the principles that guide anabolic metabolism may ultimately enhance ways to treat diseases that involve deregulated cell growth and proliferation, such as cancer.

482 citations

Journal Article
TL;DR: The heterogeneity of histological changes associated with antitumor effects suggested that R115777, and possibly farnesyl protein transferase inhibitors as a class, alter processes of transformation related to tumor-host interactions in addition to inhibiting tumor-cell proliferation.
Abstract: R115777 [(B)-6-[amino(4-chlorophenyl)(1-methyl-1H-imidazol-5-yl)-methyl]-4-(3-chlorophenyl)-1-methyl-2(1H)-quinolinone] is a potent and selective inhibitor of farnesyl protein transferase with significant antitumor effects in vivo subsequent to oral administration in mice. In vitro, using isolated human farnesyl protein transferase, R115777 competitively inhibited the farnesylation of lamin B and K-RasB peptide substrates, with IC50s of 0.86 nM and 7.9 nM, respectively. In a panel of 53 human tumor cell lines tested for growth inhibition, approximately 75% were found to be sensitive to R115777. The majority of sensitive cell lines had a wild-type ras gene. Tumor cell lines bearing H-ras or N-ras mutations were among the most sensitive of the cell lines tested, with responses observed at nanomolar concentrations of R115777. Tumor cell lines bearing mutant K-ras genes required higher concentrations for inhibition of cell growth, with 50% of the cell lines resistant to R115777 up to concentrations of 500 nM. Inhibition of H-Ras, N-Ras, and lamin B protein processing was observed at concentrations of R115777 that inhibited cell proliferation. However, inhibition of K-RasB protein-processing could not be detected. Oral administration b.i.d. of R115777 to nude mice bearing s.c. tumors at doses ranging from 6.25-100 mg/kg inhibited the growth of tumors bearing mutant H-ras, mutant K-ras, and wild-type ras genes. Histological evaluations revealed heterogeneity in tumor responses to R115777. In LoVo human colon tumors, treatment with R115777 produced a prominent antiangiogenic response. In CAPAN-2 human pancreatic tumors, an antiproilferative response predominated, whereas in C32 human melanoma, marked induction of apoptosis was observed. The heterogeneity of histological changes associated with antitumor effects suggested that R115777, and possibly farnesyl protein transferase inhibitors as a class, alter processes of transformation related to tumor-host interactions in addition to inhibiting tumor-cell proliferation.

482 citations

Journal ArticleDOI
TL;DR: The effects of the antisense oligomer exhibited sequence specificity, and furthermore, these effects could be reversed by hybridization competition with another complementary oligomer.
Abstract: To study the role of a nuclear proto-oncogene in the regulation of cell growth and differentiation, we inhibited HL-60 c-myc expression with a complementary antisense oligomer. This oligomer was stable in culture and entered cells, forming an intracellular duplex. Incubation of cells with the anti-myc oligomer decreased the steady-state levels of c-myc protein by 50 to 80%, whereas a control oligomer did not significantly affect the c-myc protein concentration. Direct inhibition of c-myc expression with the anti-myc oligomer was associated with a decreased cell growth rate and an induction of myeloid differentiation. Related antisense oligomers with 2- to 12-base-pair mismatches with c-myc mRNA did not influence HL-60 cells. Thus, the effects of the antisense oligomer exhibited sequence specificity, and furthermore, these effects could be reversed by hybridization competition with another complementary oligomer. Antisense inhibition of a nuclear proto-oncogene apparently bypasses cell surface events in affecting cell proliferation and differentiation.

481 citations

Journal ArticleDOI
TL;DR: The ability to switch hepatocytes from differentiation to growth is not limited to a single ECM molecule, a distinct three dimensional ECM geometry, or due to alteration of cell‐cell interactions, rather, the regulatory signals conveyed by immobilized ECM molecules depend on the density at which they are presented and thus, on their ability to either prohibit or support cell spreading.
Abstract: Studies were carried out to analyze how different extracellular matrix (ECM) molecules regulate hepatocyte growth and differentiation. Freshly isolated rat hepatocytes were cultured on non-adhesive plastic dishes that were pre-coated with defined densities of either laminin, fibronectin, type I collagen, or type IV collagen. Sparse cell plating densities were used to minimize cell-cell contact formation and all studies were carried out in chemically defined medium that contained a saturating amount of soluble growth factors. Dishes coated with a low ECM density (1 ng/cm2) supported hepatocyte attachment, but did not promote cell spreading or growth. Computerized image analysis confirmed that over 80% of cells remained free of contact with other cells under these conditions. Yet, these round cells maintained high levels of albumin gene expression as well as elevated secretion rates for multiple liver-specific proteins (albumin, transferrin, and fibrinogen), regardless of the type of ECM molecule used for cell attachment. When ECM coating densities were raised from 1 to 1,000 ng/cm2, cell spreading, expression of histone mRNA, DNA synthesis, and cell proliferation all increased in parallel. Activation of growth by high ECM densities was also accompanied by a concomitant down-regulation of differentiated functions and again, dishes coated with all four types of ECM molecules produced similar effects. Thus, the ability to switch hepatocytes from differentiation to growth (i.e., between different genetic programs) is not limited to a single ECM molecule, a distinct three dimensional ECM geometry, or due to alteration of cell-cell interactions. Rather, the regulatory signals conveyed by immobilized ECM molecules depend on the density at which they are presented and thus, on their ability to either prohibit or support cell spreading.

481 citations

Journal ArticleDOI
TL;DR: The results suggest that delivery of miRNAs with standard therapies, such as XRT, may represent a novel therapeutic approach for lung cancer, and identify a novel mechanism by which tumor immune evasion is regulated by p53/miR-34/PDL1 axis.
Abstract: TP53, also known as p53, is one of the most commonly mutated genes in cancer (1). It is critical in regulating cell division, apoptosis, senescence, and DNA damage and repair (2–4). p53 is also important for modulating the immune response (5–9). However, whether p53 is involved in tumor immune evasion is poorly understood. This topic is particularly relevant for several reasons, among them evidence linking microRNAs (miRNAs), p53, and adaptive and innate immunity (6,10). For instance, several p53-regulated miRNAs have been implicated in adaptive and innate immunity, including the miR-17~92 cluster (11), miR-145 (12), and let-7 (13). Importantly, p53 can regulate tumor cell recognition by natural killer (NK) cells via the p53-regulated miRNA miR-34a (10). We recently showed that the miR-200 family, another miRNA family regulated by p53 (14), directly regulates PDL1 (programmed death 1 ligand 1; also known as B7-H1 or CD274) (15). PDL1 is overexpressed in many human cancers, including non–small cell lung cancer (NSCLC) (16–18), promoting T-cell tolerance and escape host immunity (19). Early clinical trials using monoclonal antibodies that block the PD1/PDL1 interaction have shown promise in some patients with advanced cancer (20,21). Here, we investigated the potential role of p53 in regulating PDL1 expression in NSCLC. We found that p53 regulates PDL1 via miR-34 by using a series of experiments involving lung cancer cell lines, miRNA target-predicting databases, and tissue samples from patients with NSCLC. Using a syngeneic mouse model of lung cancer, we demonstrated that MRX34, a liposomal formulation complexed with miR-34a mimics that is currently the subject of a phase I clinical cancer trial (22–24), alone or in combination with radiotherapy (XRT), reduced PDL1 expression in the tumor and antagonized T-cell exhaustion.

481 citations


Network Information
Related Topics (5)
Cell culture
133.3K papers, 5.3M citations
97% related
Signal transduction
122.6K papers, 8.2M citations
95% related
Cellular differentiation
90.9K papers, 6M citations
93% related
Gene expression
113.3K papers, 5.5M citations
91% related
Transcription factor
82.8K papers, 5.4M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20233,956
20226,245
20215,196
20206,247
20196,050
20185,767