scispace - formally typeset
Search or ask a question
Topic

Cell growth

About: Cell growth is a research topic. Over the lifetime, 104237 publications have been published within this topic receiving 3751303 citations. The topic is also known as: GO:0016049 & cellular growth.


Papers
More filters
Journal ArticleDOI
TL;DR: The molecular aspects of the Warburg effect are discussed with a particular emphasis on the role of the HIF-1 and the PI3K pathway, as well as the influence HIF has on cancer cell metabolism.
Abstract: Cancer cells have been shown to have altered metabolism when compared to normal non-malignant cells. The Warburg effect describes a phenomenon in which cancer cells preferentially metabolize glucose by glycolysis, producing lactate as an end product, despite being the presence of oxygen. The phenomenon was first described by Otto Warburg in the 1920s, and has resurfaced as a controversial theory, with both supportive and opposing arguments. The biochemical aspects of the Warburg effect outline a strong explanation for the cause of cancer cell proliferation, by providing the biological requirements for a cell to grow. Studies have shown that pathways such as phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) as well as hypoxia inducible factor-1 (HIF-1) are central regulators of glycolysis, cancer metabolism and cancer cell proliferation. Studies have shown that PI3K signaling pathways have a role in many cellular processes such as metabolism, inflammation, cell survival, motility and cancer progression. Herein, the cellular aspects of the PI3K pathway are described, as well as the influence HIF has on cancer cell metabolism. HIF-1 activation has been related to angiogenesis, erythropoiesis and modulation of key enzymes involved in aerobic glycolysis, thereby modulating key processes required for the Warburg effect. In this review we discuss the molecular aspects of the Warburg effect with a particular emphasis on the role of the HIF-1 and the PI3K pathway.

384 citations

Journal ArticleDOI
TL;DR: This work represents the first description of small-molecule MCL-1 inhibitors with sufficient potency to induce clear on-target cellular activity, and demonstrates the utility of these molecules as chemical tools for dissecting the basic biology of M CL-1.
Abstract: The anti-apoptotic protein MCL-1 is a key regulator of cancer cell survival and a known resistance factor for small-molecule BCL-2 family inhibitors such as ABT-263 (navitoclax), making it an attractive therapeutic target. However, directly inhibiting this target requires the disruption of high-affinity protein–protein interactions, and therefore designing small molecules potent enough to inhibit MCL-1 in cells has proven extremely challenging. Here, we describe a series of indole-2-carboxylic acids, exemplified by the compound A-1210477, that bind to MCL-1 selectively and with sufficient affinity to disrupt MCL-1–BIM complexes in living cells. A-1210477 induces the hallmarks of intrinsic apoptosis and demonstrates single agent killing of multiple myeloma and non-small cell lung cancer cell lines demonstrated to be MCL-1 dependent by BH3 profiling or siRNA rescue experiments. As predicted, A-1210477 synergizes with the BCL-2/BCL-XL inhibitor navitoclax to kill a variety of cancer cell lines. This work represents the first description of small-molecule MCL-1 inhibitors with sufficient potency to induce clear on-target cellular activity. It also demonstrates the utility of these molecules as chemical tools for dissecting the basic biology of MCL-1 and the promise of small-molecule MCL-1 inhibitors as potential therapeutics for the treatment of cancer.

384 citations

Journal ArticleDOI
TL;DR: Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death, which represents a mechanism to limit the oncogenic potential of deregulated Ras signals.

384 citations

Journal ArticleDOI
TL;DR: It appears that antisense oligodeoxynucleotides added to myc-transformed cells via culture medium are capable of eliciting sequence-specific, dose-dependent inhibition of c-myc protein expression and cell proliferation.
Abstract: The human promyelocytic leukemia cell line HL-60 overexpresses the c-myc protooncogene. A calculated secondary structure for c-myc mRNA placed the initiation codon in a bulge of a weakly base-paired region. Treatment of HL-60 cells with 5' d(AACGTTGAGGGGCAT) 3', complementary to the initiation codon and the next four codons of c-myc mRNA, inhibited c-myc protein expression in a dose-dependent manner. However, treatment of HL-60 cells with 5' d(TTGGGATAACACTTA) 3', complementary to nucleotides 17-31 of vesicular stomatitis virus matrix protein mRNA, displayed no such effects. These results agree with analogous studies of normal human T lymphocytes [Heikkila, R., Schwab, G., Wickstrom, E., Loke, S. L., Pluznik, D. H., Watt, R. & Neckers, L. M. (1987) Nature (London) 328, 445-449], except that only one-third as much oligomer was needed for a comparable effect. Proliferation of HL-60 cells in culture was inhibited in a sequence-specific, dose-dependent manner by the c-myc-complementary oligomer, but neither the oligomer complementary to vesicular stomatitis virus matrix protein mRNA nor 5' d(CATTTCTTGCTCTCC) 3', complementary to nucleotides 5399-5413 of human immunodeficiency virus tat gene mRNA, inhibited proliferation. It thus appears that antisense oligodeoxynucleotides added to myc-transformed cells via culture medium are capable of eliciting sequence-specific, dose-dependent inhibition of c-myc protein expression and cell proliferation.

383 citations

Journal ArticleDOI
16 Nov 2007-Blood
TL;DR: DKK1 is confirmed as an important therapeutic target in myeloma and the rationale for clinical evaluation of BHQ880 to improve bone disease and to inhibit MM growth is provided.

383 citations


Network Information
Related Topics (5)
Cell culture
133.3K papers, 5.3M citations
97% related
Signal transduction
122.6K papers, 8.2M citations
95% related
Cellular differentiation
90.9K papers, 6M citations
93% related
Gene expression
113.3K papers, 5.5M citations
91% related
Transcription factor
82.8K papers, 5.4M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20233,956
20226,245
20215,196
20206,247
20196,050
20185,767