scispace - formally typeset
Search or ask a question
Topic

Cell growth

About: Cell growth is a research topic. Over the lifetime, 104237 publications have been published within this topic receiving 3751303 citations. The topic is also known as: GO:0016049 & cellular growth.


Papers
More filters
Journal ArticleDOI
05 Dec 2002-Oncogene
TL;DR: Evidence is provided that constitutive activation of Stat3 contributes to the pathogenesis of glioblastoma by promoting both proliferation and survival of GBM cells and targeting Stat3 signaling may provide a potential therapeutic intervention for GBM.
Abstract: Glioblastoma multiforme (GBM), the most common and malignant central nervous system tumor in humans, is highly proliferative and resistant to apoptosis. Stat3, a latent transcription factor being activated by aberrant cytokine or growth factor signaling, acts as a suppressor of apoptosis in a number of cancer cells. Here we report that GBM tumors and cell lines contain high levels of constitutively activated Stat3 when compared with normal human astrocytes, white matter, and normal tissue adjacent to tumor. The persistent activation of Stat3 is in part, attributable to an autocrine action of interleukin-6 in the GBM cell line U251. Janus kinase inhibitor AG490 inhibits Stat3 activation with a concomitant reduction in steady-state levels of Bcl-X(L), Bcl-2 and Mcl-1 proteins and induces apoptosis in U251 cells as revealed by Poly (ADP-ribose) polymerase cleavage and Annexin-V staining. Expression of a dominant negative mutant Stat3 protein or treatment with AG490 markedly reduces the proliferation of U251 cells by inhibiting the constitutive activation of Stat3. These results provide evidence that constitutive activation of Stat3 contributes to the pathogenesis of glioblastoma by promoting both proliferation and survival of GBM cells. Therefore, targeting Stat3 signaling may provide a potential therapeutic intervention for GBM.

372 citations

Journal Article
TL;DR: TGF-beta secreted in an inflammatory site may be beneficial in diminishing lymphocyte function while promoting fibrosis and tissue repair, however, TGF- beta generated by neoplastic tissues may provide a mechanism for unrestricted tumor cell growth through its selective immunosuppressive effects.
Abstract: Transforming growth factor-beta (TGF-beta), a product of neoplastic and hemopoietic cells, is a bifunctional regulator of the immune response. At femtomolar concentrations, TGF-beta stimulates monocyte migration, and picomolar quantities induce synthesis of monocyte growth factors, including IL-1, that may promote tissue repair by regulating fibrosis and angiogenesis. Paradoxically, TGF-beta at picomolar concentrations also blocks the ability of IL-1 to stimulate lymphocyte proliferation. At 0.01 to 1.0 ng/ml, TGF-beta 1 and its homologue, TGF-beta 2, suppress the IL-1-dependent murine thymocyte proliferation assay. TGF-beta also inhibits human peripheral blood T lymphocyte mitogenesis. Inhibition of cell division appears to occur after activation of the lymphocytes inasmuch as neither gene expression nor translation of IL-2R is suppressed. Furthermore, TGF-beta does not block synthesis of IL-2. Therefore, TGF-beta 1 and TGF-beta 2 likely act at a site distal to IL-1 to block lymphocyte DNA synthesis. These findings suggest that TGF-beta secreted in an inflammatory site may be beneficial in diminishing lymphocyte function while promoting fibrosis and tissue repair. However, TGF-beta generated by neoplastic tissues may provide a mechanism for unrestricted tumor cell growth through its selective immunosuppressive effects.

371 citations

Journal ArticleDOI
01 Feb 2000-Blood
TL;DR: The results shed new light on the potential role of this chemokine in the stem cell engraftment process, which involves migration, adhesion, and proliferation, and both adhesion-induced CXCR-4 overexpression and SDF-1 stimulating activity may be of clinical relevance for improving cell therapy settings in stem cell transplantation.

371 citations

Journal ArticleDOI
TL;DR: A mechanism in which EZH2 expression-mediated downregulation of DNA damage repair leads to accumulation of recurrent RAF1 gene amplification in BTICs, which activates p-ERK-β-catenin signaling to promote BTIC expansion is identified.

371 citations

Journal ArticleDOI
TL;DR: The ability of cell cycle inhibition to decrease both neuronal cell death and reactive gliosis after experimental TBI suggests that this treatment approach may be useful clinically.
Abstract: Traumatic brain injury (TBI) causes neuronal apoptosis, inflammation, and reactive astrogliosis, which contribute to secondary tissue loss, impaired regeneration, and associated functional disabilities. Here, we show that up-regulation of cell cycle components is associated with caspase-mediated neuronal apoptosis and glial proliferation after TBI in rats. In primary neuronal and astrocyte cultures, cell cycle inhibition (including the cyclin-dependent kinase inhibitors flavopiridol, roscovitine, and olomoucine) reduced up-regulation of cell cycle proteins, limited neuronal cell death after etoposide-induced DNA damage, and attenuated astrocyte proliferation. After TBI in rats, flavopiridol reduced cyclin D1 expression in neurons and glia in ipsilateral cortex and hippocampus. Treatment also decreased neuronal cell death and lesion volume, reduced astroglial scar formation and microglial activation, and improved motor and cognitive recovery. The ability of cell cycle inhibition to decrease both neuronal cell death and reactive gliosis after experimental TBI suggests that this treatment approach may be useful clinically.

370 citations


Network Information
Related Topics (5)
Cell culture
133.3K papers, 5.3M citations
97% related
Signal transduction
122.6K papers, 8.2M citations
95% related
Cellular differentiation
90.9K papers, 6M citations
93% related
Gene expression
113.3K papers, 5.5M citations
91% related
Transcription factor
82.8K papers, 5.4M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20233,956
20226,245
20215,196
20206,247
20196,050
20185,767