scispace - formally typeset
Search or ask a question
Topic

Cell growth

About: Cell growth is a research topic. Over the lifetime, 104237 publications have been published within this topic receiving 3751303 citations. The topic is also known as: GO:0016049 & cellular growth.


Papers
More filters
Journal ArticleDOI
TL;DR: This study reports that Sulforaphane inhibited proliferation of cultured PC-3 human prostate cancer cells by inducing apoptosis that was characterized by appearance of cells with sub-G0/G1 DNA content, formation of cytoplasmic histone associated DNA fragments and cleavage of poly(ADP-ribose)polymerase (PARP).
Abstract: Sulforaphane (SFN), a constituent of cruciferous vegetables, is highly effective in affording protection against chemically induced cancers in animal models. Here, we report that SFN inhibited proliferation of cultured PC-3 human prostate cancer cells by inducing apoptosis that was characterized by appearance of cells with sub-G0/G1 DNA content, formation of cytoplasmic histone associated DNA fragments and cleavage of poly(ADP-ribose)polymerase (PARP). SFN-induced apoptosis was associated with up-regulation of Bax, down-regulation of Bcl-2 and activation of caspases-3, -9 and -8. SFN-induced apoptosis, and cleavage of procaspase-3 and PARP were blocked upon pre-treatment of cells with pan caspase inhibitor z-VADfmk, and specific inhibitors of caspase-9 (z-LEHDfmk) and caspase-8 (z-IETDfmk) suggesting involvement of both caspase-9 and caspase-8 pathways in SFN-induced cell death. Oral administration of SFN (5.6 micro mol, 3 times/week) significantly inhibited growth of PC-3 xenografts in nude mice. For instance, 10 days after starting therapy, the average tumor volumes in control and SFN-treated mice were 170 +/- 13 and 80 +/- 14 mm3, respectively, reflecting a >50% reduction in tumor volume due to SFN administration. To the best of our knowledge, the present study is the first published report to document in vivo anticancer activity of SFN in a tumor xenograft model.

356 citations

Journal Article
TL;DR: In this article, the role of microRNA miR396 in the coordination of cell proliferation in Arabidopsis leaves was investigated and shown to be a significant module in the regulation of plant proliferation in plants.
Abstract: Cell proliferation is an important determinant of plant form, but little is known about how developmental programs control cell division. Here, we describe the role of microRNA miR396 in the coordination of cell proliferation in Arabidopsis leaves. In leaf primordia, miR396 is expressed at low levels that steadily increase during organ development. We found that miR396 antagonizes the expression pattern of its targets, the GROWTH-REGULATING FACTOR (GRF) transcription factors. miR396 accumulates preferentially in the distal part of young developing leaves, restricting the expression of GRF2 to the proximal part of the organ. This, in turn, coincides with the activity of the cell proliferation marker CYCLINB1;1. We show that miR396 attenuates cell proliferation in developing leaves, through the repression of GRF activity and a decrease in the expression of cell cycle genes. We observed that the balance between miR396 and the GRFs controls the final number of cells in leaves. Furthermore, overexpression of miR396 in a mutant lacking GRF-INTERACTING FACTOR 1 severely compromises the shoot meristem. We found that miR396 is expressed at low levels throughout the meristem, overlapping with the expression of its target, GRF2. In addition, we show that miR396 can regulate cell proliferation and the size of the meristem. Arabidopsis plants with an increased activity of the transcription factor TCP4, which reduces cell proliferation in leaves, have higher miR396 and lower GRF levels. These results implicate miR396 as a significant module in the regulation of cell proliferation in plants.

356 citations

Journal ArticleDOI
21 Nov 1996-Nature
TL;DR: Findings show that signals generated by genotoxins are transduced by multiple, independent pathways, and only p53 appears to be a universal sensor of genotoxic stress.
Abstract: GENOTOXIC stress triggers signalling pathways that mediate either the protection or killing of affected cells. Whereas induction of p53 involves events in the cell nucleus1, the activation of transcription factors AP-1 and NF-κB by ultraviolet radiation is mediated through membrane-associated signalling proteins, ruling out a nuclear signal2–6. An early event in AP-1 induction by ultraviolet radiation is activation of Jun kinases (JNKs) 3,7, which mediate the induction of the immediate-early genes c-jun and c-fos7–13. The JNKs have also been proposed to mediate the apoptopic response to genotoxins14. The non-receptor tyrosine kinase c-Abl is also activated by genotoxic stress15,16. To understand the relationship between these events, we compared the activation of p53, JNK and c-Abl by several DNA-damaging agents in murine fibroblasts. We found that whereas p53 was induced by every genotoxic stimulus tested, c-Abl was activated by most stimuli except ultraviolet irradiation and JNK was strongly stimulated only by ultraviolet light and the alkylating agent methyl methanesulphonate. Activation of JNK by this alkylating agent was normal in c-Abl-null cells but was reduced in c-Src-null cells. Unlike p53 induction, c-Abl activation occurs in the S phase of the cell cycle and does not affect cell proliferation. These findings show that signals generated by genotoxins are transduced by multiple, independent pathways. Only p53 appears to be a universal sensor of genotoxic stress.

356 citations

Journal ArticleDOI
Tao Li1, Dong Li1, Jianjun Sha1, Peng Sun1, Yiran Huang1 
TL;DR: The data suggested that miR-21 could promote apoptosis resistance, motility, and invasion in prostate cancer cells and these effects of mi R-21 may be partly due to its regulation of PDCD4, TPM1, and MARCKS.

356 citations

Journal Article
TL;DR: It is proposed that SAHA has profound antiproliferative activity by causing these cells to undergo cell cycle arrest and differentiation that is dependent on the presence of SAHA.
Abstract: Histone deacetylase (HDACs) regulate histone acetylation by catalyzing the removal of acetyl groups on the NH(2)-terminal lysine residues of the core nucleosomal histones. Modulation of the acetylation status of core histones is involved in the regulation of the transcriptional activity of certain genes. HDAC activity is generally associated with transcriptional repression. Aberrant recruitment of HDAC activity has been associated with the development of certain human cancers. We have developed a class of HDAC inhibitors, such as suberoylanilide hydroxamic acid (SAHA), that were initially identified based on their ability to induce differentiation of cultured murine erythroleukemia cells. Additional studies have demonstrated that SAHA inhibits the growth of tumors in rodents. In this study we have examined the effects of SAHA on MCF-7 human breast cancer cells. We found that SAHA causes the inhibition of proliferation, accumulation of cells in a dose-dependent manner in G(1) then G(2)-M phase of the cell cycle, and induction of milk fat globule protein, milk fat membrane globule protein, and lipid droplets. Growth inhibition was associated with morphological changes including the flattening and enlargement of the cytoplasm, and a decrease in the nuclear:cytoplasmic ratio. Withdrawal of SAHA led to reentry of cells into the cell cycle and reversal to a less differentiated phenotype. SAHA induced differentiation in the estrogen receptor-negative cell line SKBr-3 and the retinoblastoma-negative cell line MDA-468. We propose that SAHA has profound antiproliferative activity by causing these cells to undergo cell cycle arrest and differentiation that is dependent on the presence of SAHA. SAHA and other HDAC inhibitors are currently in Phase I clinical trials. These findings may impact the clinical use of these drugs.

355 citations


Network Information
Related Topics (5)
Cell culture
133.3K papers, 5.3M citations
97% related
Signal transduction
122.6K papers, 8.2M citations
95% related
Cellular differentiation
90.9K papers, 6M citations
93% related
Gene expression
113.3K papers, 5.5M citations
91% related
Transcription factor
82.8K papers, 5.4M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20233,956
20226,245
20215,196
20206,247
20196,050
20185,767