scispace - formally typeset
Search or ask a question
Topic

Cell growth

About: Cell growth is a research topic. Over the lifetime, 104237 publications have been published within this topic receiving 3751303 citations. The topic is also known as: GO:0016049 & cellular growth.


Papers
More filters
Journal ArticleDOI
28 May 2010-Science
TL;DR: Control of cell size and cell cycle progression appear to be independent in mammalian cells, whereas in lower eukaryotes, 4E-BPs influence both cell growth and proliferation.
Abstract: The mammalian target of rapamycin complex 1 (mTORC1) integrates mitogen and nutrient signals to control cell proliferation and cell size. Hence, mTORC1 is implicated in a large number of human diseases--including diabetes, obesity, heart disease, and cancer--that are characterized by aberrant cell growth and proliferation. Although eukaryotic translation initiation factor 4E-binding proteins (4E-BPs) are critical mediators of mTORC1 function, their precise contribution to mTORC1 signaling and the mechanisms by which they mediate mTORC1 function have remained unclear. We inhibited the mTORC1 pathway in cells lacking 4E-BPs and analyzed the effects on cell size, cell proliferation, and cell cycle progression. Although the 4E-BPs had no effect on cell size, they inhibited cell proliferation by selectively inhibiting the translation of messenger RNAs that encode proliferation-promoting proteins and proteins involved in cell cycle progression. Thus, control of cell size and cell cycle progression appear to be independent in mammalian cells, whereas in lower eukaryotes, 4E-BPs influence both cell growth and proliferation.

666 citations

Journal ArticleDOI
TL;DR: A cell surface glycoprotein antigen with an apparent molecular weight of about 100,000 that is selectively expressed on proliferating cells was purified from deoxycholate-solubilized membranes of a cultured human leukemic thymus-derived (T) cell line by affinity chromatography on a monoclonal antibody-Sepharose column and it was found to contain antibodies against a serum component that bound tightly to cultured cells.
Abstract: A cell surface glycoprotein antigen with an apparent molecular weight of about 100,000 that is selectively expressed on proliferating cells was purified from deoxycholate-solubilized membranes of a cultured human leukemic thymus-derived (T) cell line by affinity chromatography on a monoclonal antibody-Sepharose column. A conventional xenoantiserum prepared by immunization with the affinity-purified glycoprotein was found to contain antibodies against a serum component that bound tightly to cultured cells. This molecule was shown to be specifically associated with the cell surface glycoprotein purified by immunoprecipitation from lysates of cells. We have identified the serum component as transferrin and conclude that the membrane glycoprotein is the cell surface transferrin receptor.

665 citations

Journal ArticleDOI
TL;DR: The properties of the hLAT1/h4F2hc complex would support the roles of this transporter in providing cells with essential amino acids for cell growth and cellular responses, and in distributing amino acid-related compounds.

665 citations

Journal ArticleDOI
TL;DR: By screening a comprehensive library of individual miRNAs in the background of the Dgcr8 knockout ES cells, it is reported that multiple ES cell–specific mi RNAs, members of the miR-290 family, rescue the ES cell proliferation defect.
Abstract: Dgcr8 knockout embryonic stem (ES) cells lack microprocessor activity and hence all canonical microRNAs (miRNAs). These cells proliferate slowly and accumulate in G1 phase of the cell cycle. Here, by screening a comprehensive library of individual miRNAs in the background of the Dgcr8 knockout ES cells, we report that multiple ES cell-specific miRNAs, members of the miR-290 family, rescue the ES cell proliferation defect. Furthermore, rescued cells no longer accumulate in the G1 phase of the cell cycle. These miRNAs function by suppressing several key regulators of the G1-S transition. These results show that post-transcriptional regulation by miRNAs promotes the G1-S transition of the ES cell cycle, enabling rapid proliferation of these cells. Our screening strategy provides an alternative and powerful approach for uncovering the role of individual miRNAs in biological processes, as it overcomes the common problem of redundancy and saturation in the miRNA system.

664 citations


Network Information
Related Topics (5)
Cell culture
133.3K papers, 5.3M citations
97% related
Signal transduction
122.6K papers, 8.2M citations
95% related
Cellular differentiation
90.9K papers, 6M citations
93% related
Gene expression
113.3K papers, 5.5M citations
91% related
Transcription factor
82.8K papers, 5.4M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20233,956
20226,245
20215,196
20206,247
20196,050
20185,767