scispace - formally typeset
Search or ask a question
Topic

Cell growth

About: Cell growth is a research topic. Over the lifetime, 104237 publications have been published within this topic receiving 3751303 citations. The topic is also known as: GO:0016049 & cellular growth.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown here that senescent cells induce a DNA damage response, characteristic for senescence, in neighbouring cells via gap junction‐mediated cell–cell contact and processes involving ROS, which can induce a bystander effect, spreading senescences towards their neighbours in vitro and, possibly, in vivo.
Abstract: Senescent cells produce and secrete various bioactive molecules including interleukins, growth factors, matrix-degrading enzymes and reactive oxygen species (ROS). Thus, it has been proposed that senescent cells can damage their local environment, and a stimulatory effect on tumour cell growth and invasiveness has been documented. However, it was unknown what effect, if any, senescent cells have on their normal, proliferation-competent counterparts. We show here that senescent cells induce a DNA damage response, characteristic for senescence, in neighbouring cells via gap junction-mediated cell-cell contact and processes involving ROS. Continuous exposure to senescent cells induced cell senescence in intact bystander fibroblasts. Hepatocytes bearing senescence markers clustered together in mice livers. Thus, senescent cells can induce a bystander effect, spreading senescence towards their neighbours in vitro and, possibly, in vivo.

553 citations

Journal ArticleDOI
TL;DR: Flow cytometric and cytogenetic analysis showed that this cell line represents one hyper DNA-diploid stem line with two clonal, evolved cytogenetics sublines, and like the parental C WR22 and CWR22R xenografts, thiscell line expresses prostate specific antigen.
Abstract: A cell line has been derived from a human prostatic carcinoma xenograft, CWR22R. This represents one of very few available cell lines representative of this disease. The cell line is derived from a xenograft that was serially propagated in mice after castration-induced regression and relapse of the parental, androgen-dependent CWR22 xenograft. Flow cytometric and cytogenetic analysis showed that this cell line represents one hyper DNA-diploid stem line with two clonal, evolved cytogenetic sublines. The basic karyotype is close to that of the grandparent xenograft, CWR22, and is relatively simple with 50 chromosomes. In nude mice, the line forms tumors with morphology similar to that of the xenografts, and like the parental CWR22 and CWR22R xenografts, this cell line expresses prostate specific antigen. Growth is weakly stimulated by dihydroxytestosterone and lysates are immunoreactive with androgen receptor antibody by Western blot analysis. Growth is stimulated by epidermal growth factor but is not inhibited by transforming growth factor-beta1.

553 citations

Journal ArticleDOI
TL;DR: The potential for development of c-Met inhibitors for treatment of human cancers is addressed with particular emphasis on recent findings with small-molecule inhibitors.

552 citations

Journal ArticleDOI
TL;DR: The budding yeast, Saccharomyces cerevisiae, was grown exponentially at different rates in the presence of growth rate-limiting concentrations of a protein synthesis inhibitor, cycloheximide, to support the model for the coordination of growth and division.
Abstract: The budding yeast, Saccharomyces cerevisiae, was grown exponentially at different rates in the presence of growth rate-limiting concentrations of a protein synthesis inhibitor, cycloheximide. The volumes of the parent cell and the bud were determined as were the intervals of the cell cycle devoted to the unbudded and budded periods. We found that S. cerevisiae cells divide unequally. The daughter cell (the cell produced at division by the bud of the previous cycle) is smaller and has a longer subsequent cell cycle than the parent cell which produced it. During the budded period most of the volume increase occurs in the bud and very little in the parent cell, while during the unbudded period both the daughter and the parent cell increase significantly in volume. The length of the budded interval of the cell cycle varies little as a function of population doubling time; the unbudded interval of the parent cell varies moderately; and the unbudded interval for the daughter cell varies greatly (in the latter case an increase of 100 min in population doubling time results in an increase of 124 min in the daughter cell's unbudded interval). All of the increase in the unbudded period occurs in that interval of G1 that precedes the point of cell cycle arrest by the S. cerevisiae alpha-mating factor. These results are qualitatively consistent with and support the model for the coordination of growth and division (Johnston, G. C., J. R. Pringle, and L. H. Hartwell. 1977. Exp. Cell. Res. 105:79-98.) This model states that growth and not the events of the DNA division cycle are rate limiting for cellular proliferation and that the attainment of a critical cell size is a necessary prerequisite for the "start" event in the DNA-division cycle, the event that requires the cdc 28 gene product, is inhibited by mating factor and results in duplication of the spindle pole body.

552 citations

Journal ArticleDOI
TL;DR: Senescence of CSCs and myocytes conditions the development of an aging myopathy, and IGF-1 enhanced nuclear phospho-Akt and telomerase delaying cellular aging and death.
Abstract: To determine whether cellular aging leads to a cardiomyopathy and heart failure, markers of cellular senescence, cell death, telomerase activity, telomere integrity, and cell regeneration were measured in myocytes of aging wild-type mice (WT). These parameters were similarly studied in insulin-like growth factor-1 (IGF-1) transgenic mice (TG) because IGF-1 promotes cell growth and survival and may delay cellular aging. Importantly, the consequences of aging on cardiac stem cell (CSC) growth and senescence were evaluated. Gene products implicated in growth arrest and senescence, such as p27Kip1, p53, p16INK4a, and p19ARF, were detected in myocytes of young WT mice, and their expression increased with age. IGF-1 attenuated the levels of these proteins at all ages. Telomerase activity decreased in aging WT myocytes but increased in TG, paralleling the changes in Akt phosphorylation. Reduction in nuclear phospho-Akt and telomerase resulted in telomere shortening and uncapping in WT myocytes. Senescence and death of CSCs increased with age in WT impairing the growth and turnover of cells in the heart. DNA damage and myocyte death exceeded cell formation in old WT, leading to a decreased number of myocytes and heart failure. This did not occur in TG in which CSC-mediated myocyte regeneration compensated for the extent of cell death preventing ventricular dysfunction. IGF-1 enhanced nuclear phospho-Akt and telomerase delaying cellular aging and death. The differential response of TG mice to chronological age may result from preservation of functional CSCs undergoing myocyte commitment. In conclusion, senescence of CSCs and myocytes conditions the development of an aging myopathy.

552 citations


Network Information
Related Topics (5)
Cell culture
133.3K papers, 5.3M citations
97% related
Signal transduction
122.6K papers, 8.2M citations
95% related
Cellular differentiation
90.9K papers, 6M citations
93% related
Gene expression
113.3K papers, 5.5M citations
91% related
Transcription factor
82.8K papers, 5.4M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20233,956
20226,245
20215,196
20206,247
20196,050
20185,767