scispace - formally typeset
Search or ask a question
Topic

Cell growth

About: Cell growth is a research topic. Over the lifetime, 104237 publications have been published within this topic receiving 3751303 citations. The topic is also known as: GO:0016049 & cellular growth.


Papers
More filters
Journal ArticleDOI
R. Strange1, Feng Li1, Susanne Saurer1, A. Burkhardt1, Robert R. Friis1 
TL;DR: Wyllie et al. as discussed by the authors showed that post-lactational mammary gland involution results in a dramatic drop in ODC, a gene involved in synthesis of a component of milk, and nearly simultaneous induction of SGP-2, associated with apoptotic cell death.
Abstract: During post-lactational mammary gland involution, the bulk of mammary epithelium dies and is reabsorbed. This massive cell death and tissue restructuring was found to be accompanied by a specific pattern of gene expression. Northern blot analysis showed that weaning resulted in a dramatic drop in ODC, a gene involved in synthesis of a component of milk, and the nearly simultaneous induction of SGP-2, a gene associated with apoptotic cell death. These changes were followed by decreases in expression of milk protein genes to basal levels and expression of genes associated with regulation of cell proliferation and differentiation, p53, c-myc and TGF-beta 1. Subsequently, additional genes implicated in stress response, tissue remodelling, and apoptotic cell death were transiently expressed, expression peaking at about 6 days post-weaning. A non-random degradation of DNA yielding the oligonucleosomal length fragmentation pattern typical of apoptotic cell death (Wyllie, 1980; Wyllie et al., 1980) was detected in association with morphological changes and gene expression. The correlations between: (a) changes in morphology, (b) pattern of gene expression and (c) changes in DNA integrity suggest that complementary programs for cell death and tissue remodelling direct post-lactational mammary gland involution.

531 citations

Journal ArticleDOI
TL;DR: The function of Akt3 is addressed, which is not required for the maintenance of normal carbohydrate metabolism but is essential for the attainment of normal organ size, in contrast to Akt1− / − mice, which display a proportional decrease in the sizes of all organs,Akt3 −/− mice present a selective 20% decrease in brain size.
Abstract: Studies of Drosophila and mammals have revealed the importance of insulin signaling through phosphatidylinositol 3-kinase and the serine/threonine kinase Akt/protein kinase B for the regulation of cell, organ, and organismal growth. In mammals, three highly conserved proteins, Akt1, Akt2, and Akt3, comprise the Akt family, of which the first two are required for normal growth and metabolism, respectively. Here we address the function of Akt3. Like Akt1, Akt3 is not required for the maintenance of normal carbohydrate metabolism but is essential for the attainment of normal organ size. However, in contrast to Akt1-/- mice, which display a proportional decrease in the sizes of all organs, Akt3-/- mice present a selective 20% decrease in brain size. Moreover, although Akt1- and Akt3-deficient brains are reduced in size to approximately the same degree, the absence of Akt1 leads to a reduction in cell number, whereas the lack of Akt3 results in smaller and fewer cells. Finally, mammalian target of rapamycin signaling is attenuated in the brains of Akt3-/- but not Akt1-/- mice, suggesting that differential regulation of this pathway contributes to an isoform-specific regulation of cell growth.

531 citations

Journal ArticleDOI
TL;DR: A total organ-size checkpoint may also help to coordinate cell size and cell number within an organ, and can contribute to final cell-size determination in plants.

530 citations

Journal ArticleDOI
TL;DR: A phylogenetic comparison of PCNA genes suggests that the multi-functionality observed in most species is a product of evolution.

530 citations

Journal ArticleDOI
TL;DR: The ability of HDACi to target multiple apoptotic and cell proliferation pathways may provide a competitive advantage over other chemotherapeutic agents because suppression/loss of a single pathway may not confer resistance to these agents.
Abstract: Histone deacetylase inhibitors (HDACis) inhibit tumor cell growth and survival, possibly through their ability to regulate the expression of specific proliferative and/or apoptotic genes. However, the HDACi-regulated genes necessary and/or sufficient for their biological effects remain undefined. We demonstrate that the HDACis suberoylanilide hydroxamic acid (SAHA) and depsipeptide regulate a highly overlapping gene set with at least 22% of genes showing altered expression over a 16-h culture period. SAHA and depsipeptide coordinately regulated the expression of several genes within distinct apoptosis and cell cycle pathways. Multiple genes within the Myc, type β TGF, cyclin/cyclin-dependent kinase, TNF, Bcl-2, and caspase pathways were regulated in a manner that favored induction of apoptosis and decreased cellular proliferation. APAF-1, a gene central to the intrinsic apoptotic pathway, was induced by SAHA and depsipeptide and shown to be important, but not essential, for HDACi-induced cell death. Overexpression of p16INK4A and arrest of cells in G1 can suppress HDACi-mediated apoptosis. Although p16INK4A did not affect the genome-wide transcription changes mediated by SAHA, a small number of apoptotic genes, including BCLXL and B-MYB, were differentially regulated in a manner consistent with attenuated HDACi-mediated apoptosis in arrested cells. We demonstrate that different HDACi alter transcription of a large and common set of genes that control diverse molecular pathways important for cell survival and proliferation. The ability of HDACi to target multiple apoptotic and cell proliferation pathways may provide a competitive advantage over other chemotherapeutic agents because suppression/loss of a single pathway may not confer resistance to these agents.

529 citations


Network Information
Related Topics (5)
Cell culture
133.3K papers, 5.3M citations
97% related
Signal transduction
122.6K papers, 8.2M citations
95% related
Cellular differentiation
90.9K papers, 6M citations
93% related
Gene expression
113.3K papers, 5.5M citations
91% related
Transcription factor
82.8K papers, 5.4M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20233,956
20226,245
20215,196
20206,247
20196,050
20185,767