scispace - formally typeset
Search or ask a question
Topic

Cellobiose

About: Cellobiose is a research topic. Over the lifetime, 4479 publications have been published within this topic receiving 151200 citations. The topic is also known as: 1-beta-D-Glucopyranosyl-4-D-glucopyranose & 4-beta-d-glucopyranosyl-d-glucopyranose.


Papers
More filters
Journal ArticleDOI

[...]

TL;DR: In this paper, a review of developments in the technology for ethanol production from lignocellulosic materials by "enzymatic" processes is presented, where the crystalline structure of lignosynthetic cells is opened up, making them more accessible to the cellulase enzymes.
Abstract: This article reviews developments in the technology for ethanol production from lignocellulosic materials by “enzymatic” processes. Several methods of pretreatment of lignocelluloses are discussed, where the crystalline structure of lignocelluloses is opened up, making them more accessible to the cellulase enzymes. The characteristics of these enzymes and important factors in enzymatic hydrolysis of the cellulose and hemicellulose to cellobiose, glucose, and other sugars are discussed. Different strategies are then described for enzymatic hydrolysis and fermentation, including separate enzymatic hydrolysis and fermentation (SHF), simultaneous saccharification and fermentation (SSF), non-isothermal simultaneous saccharification and fermentation (NSSF), simultaneous saccharification and co-fermentation (SSCF), and consolidated bioprocessing (CBP). Furthermore, the by-products in ethanol from lignocellulosic materials, wastewater treatment, commercial status, and energy production and integration are reviewed.

1,017 citations

Journal ArticleDOI

[...]

TL;DR: The efficiency and regulation of cellulose degradation differs among wood-rotting, litter-decomposing, mycorrhizal or plant pathogenic fungi and yeasts due to the different roles of cellulOSE degradation in the physiology and ecology of the individual groups.
Abstract: Cellulose is the main polymeric component of the plant cell wall, the most abundant polysaccharide on Earth, and an important renewable resource. Basidiomycetous fungi belong to its most potent degraders because many species grow on dead wood or litter, in environment rich in cellulose. Fungal cellulolytic systems differ from the complex cellulolytic systems of bacteria. For the degradation of cellulose, basidiomycetes utilize a set of hydrolytic enzymes typically composed of endoglucanase, cellobiohydrolase and β-glucosidase. In some species, the absence of cellobiohydrolase is substituted by the production of processive endoglucanases combining the properties of both of these enzymes. In addition, systems producing hydroxyl radicals based on cellobiose dehydrogenase, quinone redox cycling or glycopeptide-based Fenton reaction are involved in the degradation of several plant cell wall components, including cellulose. The complete cellulolytic complex used by a single fungal species is typically composed of more than one of the above mechanisms that contribute to the utilization of cellulose as a source of carbon or energy or degrade it to ensure fast substrate colonization. The efficiency and regulation of cellulose degradation differs among wood-rotting, litter-decomposing, mycorrhizal or plant pathogenic fungi and yeasts due to the different roles of cellulose degradation in the physiology and ecology of the individual groups.

656 citations

Journal ArticleDOI

[...]

TL;DR: In this paper, microcrystalline cellulose decomposition experiments were conducted in subcritical and supercritical water (25 MPa, 320−400 °C, and 0.05−10.0 s).
Abstract: Decomposition experiments of microcrystalline cellulose were conducted in subcritical and supercritical water (25 MPa, 320−400 °C, and 0.05−10.0 s). At 400 °C hydrolysis products were mainly obtained, while in 320−350 °C water, aqueous decomposition products of glucose were the main products. Kinetic studies of cellulose, cellobiose, and glucose at these conditions showed that below 350 °C the cellulose decomposition rate was slower than the glucose and cellobiose decomposition rates, while above 350 °C, the cellulose hydrolysis rate drastically increased and became higher than the glucose and cellobiose decomposition rates. Direct observation of the cellulose reaction in high-temperature water at high-pressure conditions by using a diamond anvil cell (DAC) showed that, below 280 °C, cellulose particles became gradually smaller with increasing reaction time but, at high temperatures (300−320 °C), cellulose particles disappeared with increasing transparency and much more rapidly than expected from the lowe...

638 citations

Journal ArticleDOI

[...]

TL;DR: Around the critical point, the hydrolysis rate jumps to more than an order of magnitude higher level and becomes faster than the glucose or oligomer decomposition rate and this is the reason why a high yield of Hydrolysis products in supercritical water was obtained.
Abstract: In this paper we propose a new method to hydrolyze cellulose rapidly in supercritical water (SCW) to recover glucose, fructose and oligomers (cellobiose, cellotriose, cellotetraose, etc.). Cellulose decomposition experiments were conducted with a flow type reactor in the range of temperature from 290 to 400°C at 25 MPa. A high pressure slurry feeder was developed to feed the cellulose–water slurries. Hydrolysis product yields (around 75%) in supercritical water were much higher than those in subcritical water. At a low temperature region, the glucose or oligomer conversion rate was much faster than the hydrolysis rate of cellulose. Thus, even if the hydrolysis products, such as glucose or oligomers, are formed, their further decomposition rapidly takes place and thus high yields of hydrolysis products cannot be obtained. However, around the critical point, the hydrolysis rate jumps to more than an order of magnitude higher level and becomes faster than the glucose or oligomer decomposition rate. This is the reason why we obtained a high yield of hydrolysis products in supercritical water.

614 citations

Journal ArticleDOI

[...]

TL;DR: Results support a model in which SuSy exists in a complex with the beta-glucan synthases and serves to channel carbon from sucrose to glucan, and the traditional observation that when UDPglucose is used as substrate in vitro, callose is the major product synthesized.
Abstract: Sucrose synthase (SuSy; EC 2.4.1.13; sucrose + UDP reversible UDPglucose + fructose) has always been studied as a cytoplasmic enzyme in plant cells where it serves to degrade sucrose and provide carbon for respiration and synthesis of cell wall polysaccharides and starch. We report here that at least half of the total SuSy of developing cotton fibers (Gossypium hirsutum) is tightly associated with the plasma membrane. Therefore, this form of SuSy might serve to channel carbon directly from sucrose to cellulose and/or callose synthases in the plasma membrane. By using detached and permeabilized cotton fibers, we show that carbon from sucrose can be converted at high rates to both cellulose and callose. Synthesis of cellulose or callose is favored by addition of EGTA or calcium and cellobiose, respectively. These findings contrast with the traditional observation that when UDPglucose is used as substrate in vitro, callose is the major product synthesized. Immunolocalization studies show that SuSy can be localized at the fiber surface in patterns consistent with the deposition of cellulose or callose. Thus, these results support a model in which SuSy exists in a complex with the beta-glucan synthases and serves to channel carbon from sucrose to glucan.

602 citations

Network Information
Related Topics (5)
Yeast
31.7K papers, 868.9K citations
87% related
Hydrolysis
33.5K papers, 755.9K citations
86% related
Fermentation
68.8K papers, 1.2M citations
86% related
Cellulose
59K papers, 1.4M citations
85% related
Escherichia coli
59K papers, 2M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202351
2022104
202192
2020116
2019130
2018124