scispace - formally typeset
Search or ask a question
Topic

Cellular compartment

About: Cellular compartment is a research topic. Over the lifetime, 1082 publications have been published within this topic receiving 53794 citations. The topic is also known as: cell compartmentation.


Papers
More filters
Journal ArticleDOI
TL;DR: The synthesis, regulation, and intracellular distribution of SMs are discussed, and the many direct roles played by membrane SM in various cellular functions and processes will also be discussed.

247 citations

Journal ArticleDOI
05 Jun 1987-Cell
TL;DR: The results support the existence of a hitherto unappreciated pathway of membrane flow from lysosomes and should not be considered simply a terminal target of membrane trafficking.

246 citations

Journal ArticleDOI
TL;DR: Protein kinase C alpha (PKC alpha) is a serine/threonine kinase and a member of the conventional (classical) PKCs (cPKCs), which have four conserved (C1 to C4) regions.
Abstract: Protein kinase C alpha (PKC alpha) is a serine/threonine kinase and a member of the conventional (classical) PKCs (cPKCs), which have four conserved (C1 to C4) regions. This ubiquitously expressed PKC isotype is activated in response to many different kinds of stimuli and translocates from cytosol to the specialized cellular compartments (nucleus, focal adhesion, caveolae, etc.) where it is presumed to work. Therefore, PKC alpha has been implicated in a variety of cellular functions including proliferation, apoptosis, differentiation, motility, and inflammation. However, the responses induced by activation or overexpression of PKC alpha vary depending on the types, and sometimes conditions, of cells. For example, in some types of cells, PKC alpha is implicated in cell growth. In contrast, it may play a role in cell cycle arrest and differentiation in other types of cells. Therefore, alterations of cell responses induced by PKC alpha are not an intrinsic property of this isoform. The responses are modulated by dynamic interactions with cell-type specific factors: substrates, modulators and anchoring proteins.

242 citations

Journal ArticleDOI
John F. Allen1
TL;DR: Redox control of synthesis de novo is put forward as the common property of those proteins that must be encoded and synthesized within mitochondria and chloroplasts within eukaryotic cells, for co-location for redox regulation.
Abstract: Mitochondria and chloroplasts are energy-transducing organelles of the cytoplasm of eukaryotic cells. They originated as bacterial symbionts whose host cells acquired respiration from the precursor of the mitochondrion, and oxygenic photosynthesis from the precursor of the chloroplast. The host cells also acquired genetic information from their symbionts, eventually incorporating much of it into their own genomes. Genes of the eukaryotic cell nucleus now encode most mitochondrial and chloroplast proteins. Genes are copied and moved between cellular compartments with relative ease, and there is no obvious obstacle to successful import of any protein precursor from the cytosol. So why are any genes at all retained in cytoplasmic organelles? One proposal is that these small but functional genomes provide a location for genes that is close to, and in the same compartment as, their gene products. This co-location facilitates rapid and direct regulatory coupling. Redox control of synthesis de novo is put forward as the common property of those proteins that must be encoded and synthesized within mitochondria and chloroplasts. This testable hypothesis is termed CORR, for co-location for redox regulation. Principles, predictions and consequences of CORR are examined in the context of competing hypotheses and current evidence.

240 citations

01 Jan 2011
TL;DR: Fatty acid-binding proteins (FABP) as discussed by the authors are members of the intracellular lipid-binding protein (iLBP) family and are involved in reversibly binding intra-cell hydrophobic ligands and trafficking them throughout cellular compartments, including peroxisomes, mitochondria, endoplasmic reticulum and nucleus.
Abstract: Fatty acid-binding proteins (FABPs) are members of the intracellular lipid-binding protein (iLBP) family and are involved in reversibly binding intracellular hydrophobic ligands and trafficking them throughout cellular compartments, including the peroxisomes, mitochondria, endoplasmic reticulum and nucleus. FABPs are small, structurally conserved cytosolic proteins consisting of a water-filled, interior-binding pocket surrounded by ten anti-parallel beta sheets, forming a beta barrel. At the superior surface, two alpha-helices cap the pocket and are thought to regulate binding. FABPs have broad specificity, including the ability to bind long-chain (C16‐C20) fatty acids, eicosanoids, bile salts and peroxisome proliferators. FABPs demonstrate strong evolutionary conservation and are present in a spectrum of species including Drosophila melanogaster, Caenorhabditis elegans, mouse and human. The human genome consists of nine putatively functional protein-coding FABP genes. The most recently identified family member, FABP12, has been less studied.

239 citations


Network Information
Related Topics (5)
Transcription factor
82.8K papers, 5.4M citations
88% related
Gene expression
113.3K papers, 5.5M citations
88% related
Regulation of gene expression
85.4K papers, 5.8M citations
87% related
Peptide sequence
84.1K papers, 4.3M citations
86% related
RNA
111.6K papers, 5.4M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20237
202225
202133
202040
201933
201829