scispace - formally typeset
Search or ask a question
Topic

Cellular compartment

About: Cellular compartment is a research topic. Over the lifetime, 1082 publications have been published within this topic receiving 53794 citations. The topic is also known as: cell compartmentation.


Papers
More filters
Journal ArticleDOI
TL;DR: Data indicate that maturation of myeloperoxidase is closely linked to its deposition into dense azurophilic granules via a monensin-sensitive process(es).

21 citations

Journal ArticleDOI
TL;DR: It is postulated that upon reaching a critical intralysosomal concentration, A2-E is released from the lysosome and then specifically targets the outer mitochondrial membrane thereby initiating apoptosis of the RPE cell.
Abstract: Lipofuscin occurs in association with various blinding diseases, including ARMD. Formation of lipofuscin is considered to be initiated by the inability of the RPE lysosome to degrade constituents of phagocytosed material resulting in its intralysosomal accumulation. Thus, the deposition of abnormal retinoid adducts causing the autofluorescent properties of RPE lipofuscin originates from abnormal products of the retinoid cycle contained in phagocytosed photoreceptor outer segments. The major lipofuscin retinoid conjugate A2-E was previously shown to exert toxic effects on RPE cells by directly damaging lysosomal function and structure. However, A2-E was also proposed to severely harm extralysosomal RPE cell structures during the pathogenesis of ARMD. This would require release or leakage of A2-E from the lysosomal compartment with subsequent targeting of other cellular compartments. We therefore now investigated intralysosomal accumulation, possible biodegradation, release from the lysosomal compartment and intracellular spreading of 14C-labelled A2-E in cultured human RPE cells. We specifically loaded lysosomes of cultured human RPE cells with [14C]A2-E. A linear increase of intracellular radioactivity was observed during the 4-week loading period. Cell fractionation experiments indicated that more than 90% of loaded A2-E was specifically accumulating in the lysosomes. After loading, the fate of the radioactive label was chased over a period of an additional 4 weeks. No metabolism or secretion of A2-E to the medium was detectable. Subcellular fractionation revealed that during the chase period, about 13% were shifted from the lysosomes to mitochondrial fractions. This effect was strikingly intensified when after loading the cells with the labeled retinoid, its intralysosomal concentration was boosted by an additional load with non-labeled A2-E. Thus about 44% of the label were located in mitochondria at the end of the chase period. No significant spreading to other cell compartments was detectable. Since A2-E was suggested to act as a proapoptotic molecule via a mitochondrial pathway, we postulate that upon reaching a critical intralysosomal concentration, A2-E is released from the lysosome and then specifically targets the outer mitochondrial membrane thereby initiating apoptosis of the RPE cell. This may also apply correspondingly to other lipofuscin-associated molecules that cause leakage of the lysosomal membrane.

21 citations

Book ChapterDOI
01 Jan 2017
TL;DR: In the review, the mechanisms of ROS formation in different cellular compartments like mitochondria, peroxisomes, chloroplasts, nucleus, vacuole, cell wall, and plasma membranes are considered and summarized.
Abstract: Reactive oxygen species (ROS) are generated in various plant organelles under normal conditions and play an important role in different physiological progressions. But under abiotic stress, excessive ROS generation takes place which causes damage to normal functioning of plants. ROS play a dual role as they cause cellular damage and are also involved in abiotic stress signaling. Therefore, it is important to investigate the features of appearance of physiological effects of ROS depending on their cellular localization under the abiotic stress. Plants possess certain antioxidative mechanisms to deal with excess ROS in the cells, which involves enzymatic and nonenzymatic antioxidants. In the review, the mechanisms of ROS formation in different cellular compartments like mitochondria, peroxisomes, chloroplasts, nucleus, vacuole, cell wall, and plasma membranes are considered and summarized.

21 citations

Journal ArticleDOI
TL;DR: It is hypothesized that upregulation of this enzyme protects mitochondria against mitochondrial ROS, but does not protect other cellular compartments such as endoplasmic reticulum and plasma membrane causing necrosis.

21 citations

Journal ArticleDOI
TL;DR: It is shown that after activation, Gαs rapidly associates with the endoplasmic reticulum, mitochondria, and endosomes, consistent with indiscriminate sampling of intracellular membranes from the cytosol rather than transport via a specific vesicular pathway, and that an acylation-deacylation cycle is important for the steady-state localization of G αs at the plasma membrane.

21 citations


Network Information
Related Topics (5)
Transcription factor
82.8K papers, 5.4M citations
88% related
Gene expression
113.3K papers, 5.5M citations
88% related
Regulation of gene expression
85.4K papers, 5.8M citations
87% related
Peptide sequence
84.1K papers, 4.3M citations
86% related
RNA
111.6K papers, 5.4M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20237
202225
202133
202040
201933
201829