scispace - formally typeset
Search or ask a question
Topic

Cellular compartment

About: Cellular compartment is a research topic. Over the lifetime, 1082 publications have been published within this topic receiving 53794 citations. The topic is also known as: cell compartmentation.


Papers
More filters
Book ChapterDOI
TL;DR: The described technique allows to rapidly perturb molecular activities and organelle–organelle communications at precise locations with specified timing and represents a powerful strategy to dissect spatiotemporally complex biological processes.
Abstract: In this chapter we describe a technique for rapid protein targeting to individual intracellular organelles. This method enables a real-time imaging-based study of cellular behavior in response to controlled induction of signaling events in a specifically targeted cellular compartment. We provide rationales and a step-by-step protocol for probe design and imaging of protein targeting along with two different applications of this technique. One application involves organelle-specific activation of small GTPases, while the other application involves membrane tethering of two different organelles. In the former case, we activate Rac1 and Ras at distinct intracellular locations in order to study compartmentalization of their signaling pathways, and in the latter example, we induce membrane tethering of the endoplasmic reticulum and mitochondria in order to study organelle-organelle communication. The described technique allows to rapidly perturb molecular activities and organelle-organelle communications at precise locations with specified timing and represents a powerful strategy to dissect spatiotemporally complex biological processes.

6 citations

Journal ArticleDOI
TL;DR: A fine structural study of the normal synovial cells from 8 pigs revealed 3 cell types as evidence of variation in the presence of cytoplasmic organelles.

6 citations

Journal ArticleDOI
09 Apr 2014
TL;DR: It is proposed that differential sorting begins at the plasma membrane leading to spatially distinct intracellular trafficking routes that are well defined in space that sustains an important coupling between the endocytic and signaling systems that allows cells to sense their environment.
Abstract: Eukaryotic cells display an asymmetric distribution of cellular compartments relying on their adhesion and the underlying anisotropy of the actin and microtubule cytoskeleton. Studies using a minimal cell culture system based on confined adhesion on micropatterns have illustrated that trafficking compartments are well organized at the single cell level in response to the geometry of cellular adhesion cues. Expanding our analysis on cellular uptake processes, we have found that cellular adhesion additionally defines the topology of endocytosis and signaling. During endocytosis, transferrin (Tfn) and epidermal growth factor (EGF) concentrate at distinct cellular sites in micropatterned cells. Tfn is enriched in adhesive sites during uptake, whereas EGF endocytosis is restricted to the dorsal cellular surface. This unexpected dorsal/ventral asymmetry is regulated by uptake mechanisms and actin dynamics. Interestingly, restricted EGF uptake leads to asymmetry of EGF receptor activation that is required to sus...

5 citations

Journal ArticleDOI
TL;DR: Proteomic profiling in distinct cellular compartments led to the identification of a novel p53‐dependent biomarker of telomere dysfunction, S100A6.
Abstract: Telomere dysfunction is evoking a DNA damage response which leads to replicative senescence or apoptosis. Tumor cells feature telomerase, a ribonucleoprotein complex counteracting telomere shortening and proliferation limitation as a prerequisite of immortal cell growth. Recently, we demonstrated the effects of telomerase inhibition on the proteome of tumor cell clones in whole cell lysates by SELDI-TOF-MS profiling and MS/MS protein identification (Zimmermann et al., Proteomics 2009, 9, 521―534). We continued proteomic analyses of such clones after telomerase-inhibition using fractionation of cellular compartments. Among the differentially expressed peaks found in different fractions, a cytoplasmic 10.1 kDa protein upregulated in telomerase-inhibited clones (p < 0.0001) was identified by nanoflow-HPLC-MS/MS as S100A6. S100A6 upregulation was confirmed by immunoblotting in telomerase-inhibited HCT-116, A-549, and NCI-H460 clones. S100A6 and other proteins involved in telomere dysfunction were further analyzed in derivative p53 ―/― and p21 ―/― HCT-116 cell lines indicating an overall reduced number of significant changes in these lines compared to wild type HCT-116 cells. In addition, post-translational modification of S100A6 was demonstrated with a potential role in mediating the cellular response to telomere dysfunction. In conclusion, proteomic profiling in distinct cellular compartments led to the identification of a novel p53-dependent biomarker of telomere dysfunction, S100A6.

5 citations

Journal ArticleDOI
TL;DR: G6PD activity in epithelium of SI and LI decreases with aging due to the accumulation of significant amounts of enzyme bound to cell organelles, a condition which makes it less active than the soluble enzyme.

5 citations


Network Information
Related Topics (5)
Transcription factor
82.8K papers, 5.4M citations
88% related
Gene expression
113.3K papers, 5.5M citations
88% related
Regulation of gene expression
85.4K papers, 5.8M citations
87% related
Peptide sequence
84.1K papers, 4.3M citations
86% related
RNA
111.6K papers, 5.4M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20237
202225
202133
202040
201933
201829