scispace - formally typeset
Search or ask a question

Showing papers on "Cellular differentiation published in 2017"


Journal ArticleDOI
TL;DR: Ample evidence supports a key role for MDSCs in immune suppression in cancer, as well as their prominent role in tumor angiogenesis, drug resistance, and promotion of tumor metastases.
Abstract: The development of tumor-specific T cell tolerance is largely responsible for tumor escape. Accumulation of myeloid-derived suppressor cells (MDSCs) in animal tumor models as well as in cancer patients is involved in tumor-associated T cell tolerance. In recent years, it has become increasingly evident that MDSCs bring about antigen-specific T cell tolerance by various mechanisms, which is the focus of this chapter.

1,190 citations


Journal ArticleDOI
16 Nov 2017-Nature
TL;DR: This paper reported profiling of 53,193 individual epithelial cells from the small intestine and organoids of mice, which enabled the identification and characterization of previously unknown subtypes of intestinal epithelial cell and their gene signatures.
Abstract: Intestinal epithelial cells absorb nutrients, respond to microbes, function as a barrier and help to coordinate immune responses. Here we report profiling of 53,193 individual epithelial cells from the small intestine and organoids of mice, which enabled the identification and characterization of previously unknown subtypes of intestinal epithelial cell and their gene signatures. We found unexpected diversity in hormone-secreting enteroendocrine cells and constructed the taxonomy of newly identified subtypes, and distinguished between two subtypes of tuft cell, one of which expresses the epithelial cytokine Tslp and the pan-immune marker CD45, which was not previously associated with non-haematopoietic cells. We also characterized the ways in which cell-intrinsic states and the proportions of different cell types respond to bacterial and helminth infections: Salmonella infection caused an increase in the abundance of Paneth cells and enterocytes, and broad activation of an antimicrobial program; Heligmosomoides polygyrus caused an increase in the abundance of goblet and tuft cells. Our survey highlights previously unidentified markers and programs, associates sensory molecules with cell types, and uncovers principles of gut homeostasis and response to pathogens.

1,068 citations



Journal ArticleDOI
TL;DR: Fundamental insights into the mechanobiology of stem cells also inform the design of artificial niches to support stem cells for regenerative therapies.
Abstract: Stem cells and their local microenvironment, or niche, communicate through mechanical cues to regulate cell fate and cell behaviour and to guide developmental processes. During embryonic development, mechanical forces are involved in patterning and organogenesis. The physical environment of pluripotent stem cells regulates their self-renewal and differentiation. Mechanical and physical cues are also important in adult tissues, where adult stem cells require physical interactions with the extracellular matrix to maintain their potency. In vitro, synthetic models of the stem cell niche can be used to precisely control and manipulate the biophysical and biochemical properties of the stem cell microenvironment and to examine how the mode and magnitude of mechanical cues, such as matrix stiffness or applied forces, direct stem cell differentiation and function. Fundamental insights into the mechanobiology of stem cells also inform the design of artificial niches to support stem cells for regenerative therapies.

939 citations


Journal ArticleDOI
10 Jan 2017-eLife
TL;DR: It is demonstrated that Nkx2.2 functions as an integral component of a modular regulatory program to correctly specify pancreatic islet cell fates.
Abstract: Many pancreatic transcription factors that are essential for islet cell differentiation have been well characterized; however, because they are often expressed in several different cell populations, their functional hierarchy remains unclear. To parse out the spatiotemporal regulation of islet cell differentiation, we used a Neurog3-Cre allele to ablate Nkx2.2, one of the earliest and most broadly expressed islet transcription factors, specifically in the Neurog3+ endocrine progenitor lineage (Nkx2.2△endo). Remarkably, many essential components of the β cell transcriptional network that were down-regulated in the Nkx2.2KO mice, were maintained in the Nkx2.2△endo mice - yet the Nkx2.2△endo mice displayed defective β cell differentiation and recapitulated the Nkx2.2KO phenotype. This suggests that Nkx2.2 is not only required in the early pancreatic progenitors, but has additional essential activities within the endocrine progenitor population. Consistently, we demonstrate Nkx2.2 functions as an integral component of a modular regulatory program to correctly specify pancreatic islet cell fates.

921 citations


Journal ArticleDOI
TL;DR: M6A sequencing reveals that knockdown of METTL3 or METTL14 induced changes in mRNA m6A enrichment and altered mRNA expression of genes with critical biological functions in GSCs, identified as promising therapeutic targets for glioblastoma.

865 citations


Journal ArticleDOI
TL;DR: It is shown that shRNA-mediated depletion of the m6A-forming enzyme METTL3 in human hematopoietic stem/progenitor cells (HSPCs) promotes cell differentiation, coupled with reduced cell proliferation, and this results provide a rationale for the therapeutic targeting of MET TL3 in myeloid leukemia.
Abstract: N6-methyladenosine (m6A) is an abundant nucleotide modification in mRNA that is required for the differentiation of mouse embryonic stem cells. However, it remains unknown whether the m6A modification controls the differentiation of normal and/or malignant myeloid hematopoietic cells. Here we show that shRNA-mediated depletion of the m6A-forming enzyme METTL3 in human hematopoietic stem/progenitor cells (HSPCs) promotes cell differentiation, coupled with reduced cell proliferation. Conversely, overexpression of wild-type METTL3, but not of a catalytically inactive form of METTL3, inhibits cell differentiation and increases cell growth. METTL3 mRNA and protein are expressed more abundantly in acute myeloid leukemia (AML) cells than in healthy HSPCs or other types of tumor cells. Furthermore, METTL3 depletion in human myeloid leukemia cell lines induces cell differentiation and apoptosis and delays leukemia progression in recipient mice in vivo. Single-nucleotide-resolution mapping of m6A coupled with ribosome profiling reveals that m6A promotes the translation of c-MYC, BCL2 and PTEN mRNAs in the human acute myeloid leukemia MOLM-13 cell line. Moreover, loss of METTL3 leads to increased levels of phosphorylated AKT, which contributes to the differentiation-promoting effects of METTL3 depletion. Overall, these results provide a rationale for the therapeutic targeting of METTL3 in myeloid leukemia.

804 citations


Journal ArticleDOI
TL;DR: A causal role for senescent cells in bone loss with aging is established, and targeting these cells has both anti-resorptive and anabolic effects on bone, which suggests a novel treatment strategy not only for osteoporosis, but also for multiple age-related comorbidities.
Abstract: Aging is associated with increased cellular senescence, which is hypothesized to drive the eventual development of multiple comorbidities. Here we investigate a role for senescent cells in age-related bone loss through multiple approaches. In particular, we used either genetic (i.e., the INK-ATTAC 'suicide' transgene encoding an inducible caspase 8 expressed specifically in senescent cells) or pharmacological (i.e., 'senolytic' compounds) means to eliminate senescent cells. We also inhibited the production of the proinflammatory secretome of senescent cells using a JAK inhibitor (JAKi). In aged (20- to 22-month-old) mice with established bone loss, activation of the INK-ATTAC caspase 8 in senescent cells or treatment with senolytics or the JAKi for 2-4 months resulted in higher bone mass and strength and better bone microarchitecture than in vehicle-treated mice. The beneficial effects of targeting senescent cells were due to lower bone resorption with either maintained (trabecular) or higher (cortical) bone formation as compared to vehicle-treated mice. In vitro studies demonstrated that senescent-cell conditioned medium impaired osteoblast mineralization and enhanced osteoclast-progenitor survival, leading to increased osteoclastogenesis. Collectively, these data establish a causal role for senescent cells in bone loss with aging, and demonstrate that targeting these cells has both anti-resorptive and anabolic effects on bone. Given that eliminating senescent cells and/or inhibiting their proinflammatory secretome also improves cardiovascular function, enhances insulin sensitivity, and reduces frailty, targeting this fundamental mechanism to prevent age-related bone loss suggests a novel treatment strategy not only for osteoporosis, but also for multiple age-related comorbidities.

679 citations


Journal ArticleDOI
TL;DR: Flow cytometric, transcriptomic and functional data at single-cell resolution are integrated to quantitatively map early differentiation of human HSCs towards lineage commitment and provide a basis for the understanding of haematopoietic malignancies.
Abstract: Blood formation is believed to occur through stepwise progression of haematopoietic stem cells (HSCs) following a tree-like hierarchy of oligo-, bi- and unipotent progenitors. However, this model is based on the analysis of predefined flow-sorted cell populations. Here we integrated flow cytometric, transcriptomic and functional data at single-cell resolution to quantitatively map early differentiation of human HSCs towards lineage commitment. During homeostasis, individual HSCs gradually acquire lineage biases along multiple directions without passing through discrete hierarchically organized progenitor populations. Instead, unilineage-restricted cells emerge directly from a 'continuum of low-primed undifferentiated haematopoietic stem and progenitor cells' (CLOUD-HSPCs). Distinct gene expression modules operate in a combinatorial manner to control stemness, early lineage priming and the subsequent progression into all major branches of haematopoiesis. These data reveal a continuous landscape of human steady-state haematopoiesis downstream of HSCs and provide a basis for the understanding of haematopoietic malignancies.

665 citations


Journal ArticleDOI
TL;DR: YTHDC2 is an m6A-binding protein that plays critical roles during spermatogenesis and enhances the translation efficiency of its targets and also decreases their mRNA abundance.
Abstract: N6-methyladenosine (m6A) is the most common internal modification in eukaryotic mRNA. It is dynamically installed and removed, and acts as a new layer of mRNA metabolism, regulating biological processes including stem cell pluripotency, cell differentiation, and energy homeostasis. m6A is recognized by selective binding proteins; YTHDF1 and YTHDF3 work in concert to affect the translation of m6A-containing mRNAs, YTHDF2 expedites mRNA decay, and YTHDC1 affects the nuclear processing of its targets. The biological function of YTHDC2, the final member of the YTH protein family, remains unknown. We report that YTHDC2 selectively binds m6A at its consensus motif. YTHDC2 enhances the translation efficiency of its targets and also decreases their mRNA abundance. Ythdc2 knockout mice are infertile; males have significantly smaller testes and females have significantly smaller ovaries compared to those of littermates. The germ cells of Ythdc2 knockout mice do not develop past the zygotene stage and accordingly, Ythdc2 is upregulated in the testes as meiosis begins. Thus, YTHDC2 is an m6A-binding protein that plays critical roles during spermatogenesis.

611 citations


Journal ArticleDOI
17 Aug 2017-Nature
TL;DR: This study elucidates for the first time, to the knowledge, the in vivo biological role of m6A modification in T-cell-mediated pathogenesis and reveals a novel mechanism of T cell homeostasis and signal-dependent induction of mRNA degradation.
Abstract: N6-methyladenosine (m6A) is the most common and abundant messenger RNA modification, modulated by 'writers', 'erasers' and 'readers' of this mark. In vitro data have shown that m6A influences all fundamental aspects of mRNA metabolism, mainly mRNA stability, to determine stem cell fates. However, its in vivo physiological function in mammals and adult mammalian cells is still unknown. Here we show that the deletion of m6A 'writer' protein METTL3 in mouse T cells disrupts T cell homeostasis and differentiation. In a lymphopaenic mouse adoptive transfer model, naive Mettl3-deficient T cells failed to undergo homeostatic expansion and remained in the naive state for up to 12 weeks, thereby preventing colitis. Consistent with these observations, the mRNAs of SOCS family genes encoding the STAT signalling inhibitory proteins SOCS1, SOCS3 and CISH were marked by m6A, exhibited slower mRNA decay and showed increased mRNAs and levels of protein expression in Mettl3-deficient naive T cells. This increased SOCS family activity consequently inhibited IL-7-mediated STAT5 activation and T cell homeostatic proliferation and differentiation. We also found that m6A has important roles for inducible degradation of Socs mRNAs in response to IL-7 signalling in order to reprogram naive T cells for proliferation and differentiation. Our study elucidates for the first time, to our knowledge, the in vivo biological role of m6A modification in T-cell-mediated pathogenesis and reveals a novel mechanism of T cell homeostasis and signal-dependent induction of mRNA degradation.

Journal ArticleDOI
TL;DR: This review encapsulates where recent advances appear to leave the ever-shifting state of the art in the cell microenvironment, and it highlights areas in which substantial potential and uncertainty remain.
Abstract: The cell microenvironment has emerged as a key determinant of cell behavior and function in development, physiology, and pathophysiology. The extracellular matrix (ECM) within the cell microenvironment serves not only as a structural foundation for cells but also as a source of three-dimensional (3D) biochemical and biophysical cues that trigger and regulate cell behaviors. Increasing evidence suggests that the 3D character of the microenvironment is required for development of many critical cell responses observed in vivo, fueling a surge in the development of functional and biomimetic materials for engineering the 3D cell microenvironment. Progress in the design of such materials has improved control of cell behaviors in 3D and advanced the fields of tissue regeneration, in vitro tissue models, large-scale cell differentiation, immunotherapy, and gene therapy. However, the field is still in its infancy, and discoveries about the nature of cell–microenvironment interactions continue to overturn much earl...

Journal ArticleDOI
08 Nov 2017-Nature
TL;DR: It is shown that autologous transgenic keratinocyte cultures regenerated an entire, fully functional epidermis on a seven-year-old child suffering from a devastating, life-threatening form of JEB, providing a blueprint that can be applied to other stem cell-mediated combined ex vivo cell and gene therapies.
Abstract: Junctional epidermolysis bullosa (JEB) is a severe and often lethal genetic disease caused by mutations in genes encoding the basement membrane component laminin-332. Surviving patients with JEB develop chronic wounds to the skin and mucosa, which impair their quality of life and lead to skin cancer. Here we show that autologous transgenic keratinocyte cultures regenerated an entire, fully functional epidermis on a seven-year-old child suffering from a devastating, life-threatening form of JEB. The proviral integration pattern was maintained in vivo and epidermal renewal did not cause any clonal selection. Clonal tracing showed that the human epidermis is sustained not by equipotent progenitors, but by a limited number of long-lived stem cells, detected as holoclones, that can extensively self-renew in vitro and in vivo and produce progenitors that replenish terminally differentiated keratinocytes. This study provides a blueprint that can be applied to other stem cell-mediated combined ex vivo cell and gene therapies. Autologous transgenic epidermal stem cell cultures are used to reconstitute almost the entire epidermis of a patient with severe junctional epidermolysis bullosa. Patients with junctional epidermolysis bullosa (JEB) carry mutations in genes that encode components of the basement membrane, which ensures the integrity between the epidermis and the dermis, such as laminin-332. These mutations cause blistering of the skin and chronic wounds. Following initial treatment of an adult patient with a limited affected region, Michele De Luca and colleagues reconstruct the full epidermis of a 7-year-old patient with autologous transgenic cells transduced with a virus vector carrying the non-mutated form of laminin-322. The integration sites of the virus used for gene delivery provide a tracing tool ex vivo and in vivo and demonstrate that the human epidermis is sustained by a limited number of long-lived stem cells.

Journal ArticleDOI
29 Mar 2017-Nature
TL;DR: It is shown that human L GR5+ colorectal cancer cells serve as CSCs in growing cancer tissues and combined chemotherapy potentiates targeting of LGR5+ C SCs.
Abstract: The cancer stem cell (CSC) theory highlights a self-renewing subpopulation of cancer cells that fuels tumour growth. The existence of human CSCs is mainly supported by xenotransplantation of prospectively isolated cells, but their clonal dynamics and plasticity remain unclear. Here, we show that human LGR5+ colorectal cancer cells serve as CSCs in growing cancer tissues. Lineage-tracing experiments with a tamoxifen-inducible Cre knock-in allele of LGR5 reveal the self-renewal and differentiation capacity of LGR5+ tumour cells. Selective ablation of LGR5+ CSCs in LGR5-iCaspase9 knock-in organoids leads to tumour regression, followed by tumour regrowth driven by re-emerging LGR5+ CSCs. KRT20 knock-in reporter marks differentiated cancer cells that constantly diminish in tumour tissues, while reverting to LGR5+ CSCs and contributing to tumour regrowth after LGR5+ CSC ablation. We also show that combined chemotherapy potentiates targeting of LGR5+ CSCs. These data provide insights into the plasticity of CSCs and their potential as a therapeutic target in human colorectal cancer.

Journal ArticleDOI
TL;DR: New aspects of the molecular signaling mediated by CD69 and its involvement in the metabolic reprogramming regulating TH‐effector lineages are discussed.
Abstract: CD69 is a membrane-bound, type II C-lectin receptor. It is a classical early marker of lymphocyte activation due to its rapid appearance on the surface of the plasma membrane after stimulation. CD69 is expressed by several subsets of tissue resident immune cells, including resident memory T (TRM) cells and gamma delta (γδ) T cells, and is therefore considered a marker of tissue retention. Recent evidence has revealed that CD69 regulates some specific functions of selected T-cell subsets, determining the migration-retention ratio as well as the acquisition of effector or regulatory phenotypes. Specifically, CD69 regulates the differentiation of regulatory T (Treg) cells as well as the secretion of IFN-γ, IL-17, and IL-22. The identification of putative CD69 ligands, such as Galectin-1 (Gal-1), suggests that CD69-induced signaling can be regulated not only during cognate contacts between T cells and antigen-presenting cells in lymphoid organs, but also in the periphery, where cytokines and other metabolites control the final outcome of the immune response. Here, we will discuss new aspects of the molecular signaling mediated by CD69 and its involvement in the metabolic reprogramming regulating TH-effector lineages.

Journal ArticleDOI
TL;DR: It is proposed that cell surface marker profiles, bone‐forming capacities in ectopic and orthotopic models, and other functionalities of MSCs should be characterized prior to use in clinical applications as part of comprehensive and uniform guidelines and release criteria for their clinical‐grade production to achieve predictably favorable treatment outcomes for stem cell therapy.
Abstract: Mesenchymal stem cells (MSC) hold great potential for regenerative medicine because of their ability for self-renewal and differentiation into tissue-specific cells such as osteoblasts, chondrocytes, and adipocytes. MSCs orchestrate tissue development, maintenance and repair, and are useful for musculoskeletal regenerative therapies to treat age-related orthopedic degenerative diseases and other clinical conditions. Importantly, MSCs produce secretory factors that play critical roles in tissue repair that support both engraftment and trophic functions (autocrine and paracrine). The development of uniform protocols for both preparation and characterization of MSCs, including standardized functional assays for evaluation of their biological potential, are critical factors contributing to their clinical utility. Quality control and release criteria for MSCs should include cell surface markers, differentiation potential, and other essential cell parameters. For example, cell surface marker profiles (surfactome), bone-forming capacities in ectopic and orthotopic models, as well as cell size and granularity, telomere length, senescence status, trophic factor secretion (secretome), and immunomodulation, should be thoroughly assessed to predict MSC utility for regenerative medicine. We propose that these and other functionalities of MSCs should be characterized prior to use in clinical applications as part of comprehensive and uniform guidelines and release criteria for their clinical-grade production to achieve predictably favorable treatment outcomes for stem cell therapy. Stem Cells Translational Medicine 2017;6:2173-2185.

Journal ArticleDOI
09 Jun 2017-Science
TL;DR: Two unbiased high-dimensional technologies are employed to characterize the human DC lineage from bone marrow to blood and provide new markers that can be used to identify unambiguously pre-DC from pDC, including CD33, CX3CR1, CD2, CD5, and CD327.
Abstract: INTRODUCTION Dendritic cells (DC) are professional antigen-presenting cells that orchestrate immune responses. The human DC population comprises multiple subsets, including plasmacytoid DC (pDC) and two functionally specialized lineages of conventional DC (cDC1 and cDC2), whose origins and differentiation pathways remain incompletely defined. RATIONALE As DC are essential regulators of the immune response in health and disease, potential intervention strategies aiming at manipulation of these cells will require in-depth insights of their origins, the mechanisms that govern their homeostasis, and their functional properties. Here, we employed two unbiased high-dimensional technologies to characterize the human DC lineage from bone marrow to blood. RESULTS We isolated the DC-containing population (Lineage − HLA − DR + CD135 + cells) from human blood and defined the transcriptomes of 710 individual cells using massively parallel single-cell mRNA sequencing. By combining complementary bioinformatic approaches, we identified a small cluster of cells within this population as putative DC precursors (pre-DC). We then confirmed this finding using cytometry by time-of-flight (CyTOF) to simultaneously measure the expression of a panel of 38 different proteins at the single-cell level on Lineage − HLA − DR + cells and found that pre-DC possessed a CD123 + CD33 + CD45RA + phenotype. We confirmed the precursor potential of pre-DC by establishing their potential to differentiate in vitro into cDC1 and cDC2, but not pDC, in the known proportions found in vivo . Interestingly, pre-DC also express classical pDC markers, including CD123, CD303, and CD304. Thus, any previous studies using these markers to identify or isolate pDC will have inadvertently included CD123 + CD33 + pre-DC. We provide here new markers that can be used to identify unambiguously pre-DC from pDC, including CD33, CX3CR1, CD2, CD5, and CD327. When CD123 + CD33 + pre-DC and CD123 + CD33 − pDC were isolated separately, we observed that pre-DC have unique functional properties that were previously attributed to pDC. Although pDC remain bona fide interferon-α–producing cells, their reported interleukin-12 (IL-12) production and CD4 T cell allostimulatory capacity can likely be attributed to “contaminating” pre-DC. We then asked whether the pre-DC population contained both uncommitted and committed pre-cDC1 and pre-cDC2 precursors, as recently shown in mice. Using microfluidic single-cell mRNA sequencing (scmRNAseq), we showed that the human pre-DC population contains cells exhibiting transcriptomic priming toward cDC1 and cDC2 lineages. Flow cytometry and in vitro DC differentiation experiments further identified CD123 + CADM1 − CD1c − putative uncommitted pre-DC, alongside CADM1 + CD1c − pre-cDC1 and CADM1 − CD1c + pre-cDC2. Finally, we found that pre-DC subsets expressed T cell costimulatory molecules and induced comparable proliferation and polarization of naive CD4 T cells as adult DC. However, exposure to the Toll-like receptor 9 (TLR9) ligand CpG triggered IL-12p40 and tumor necrosis factor–α production by early pre-DC, pre-cDC1, and pre-cDC2, in contrast to differentiated cDC1 and cDC2, which do not express TLR9. CONCLUSION Using unsupervised scmRNAseq and CyTOF analyses, we have unraveled the complexity of the human DC lineage at the single-cell level, revealing a continuous process of differentiation that starts in the bone marrow (BM) with common DC progenitors (CDP), diverges at the point of emergence of pre-DC and pDC potential, and culminates in maturation of both lineages in the blood and spleen. The pre-DC compartment contains functionally and phenotypically distinct lineage-committed subpopulations, including one early uncommitted CD123 + pre-DC subset and two CD45RA + CD123 lo lineage-committed subsets. The discovery of multiple committed pre-DC populations with unique capabilities opens promising new avenues for the therapeutic exploitation of DC subset-specific targeting.

Journal ArticleDOI
06 Dec 2017-Nature
TL;DR: In addition to establishing Runx3 as a central regulator of TRM cell differentiation, these results provide insight into the signals that promote T cell residency in non-lymphoid sites, which could be used to enhance vaccine efficacy or adoptive cell therapy treatments that target cancer.
Abstract: Tissue-resident memory CD8+ T (TRM) cells are found at common sites of pathogen exposure, where they elicit rapid and robust protective immune responses. However, the molecular signals that control TRM cell differentiation and homeostasis are not fully understood. Here we show that mouse TRM precursor cells represent a unique CD8+ T cell subset that is distinct from the precursors of circulating memory cell populations at the levels of gene expression and chromatin accessibility. Using computational and pooled in vivo RNA interference screens, we identify the transcription factor Runx3 as a key regulator of TRM cell differentiation and homeostasis. Runx3 was required to establish TRM cell populations in diverse tissue environments, and supported the expression of crucial tissue-residency genes while suppressing genes associated with tissue egress and recirculation. Furthermore, we show that human and mouse tumour-infiltrating lymphocytes share a core tissue-residency gene-expression signature with TRM cells that is associated with Runx3 activity. In a mouse model of adoptive T cell therapy for melanoma, Runx3-deficient CD8+ tumour-infiltrating lymphocytes failed to accumulate in tumours, resulting in greater rates of tumour growth and mortality. Conversely, overexpression of Runx3 enhanced tumour-specific CD8+ T cell abundance, delayed tumour growth, and prolonged survival. In addition to establishing Runx3 as a central regulator of TRM cell differentiation, these results provide insight into the signals that promote T cell residency in non-lymphoid sites, which could be used to enhance vaccine efficacy or adoptive cell therapy treatments that target cancer.

Journal ArticleDOI
14 Jun 2017-Nature
TL;DR: It is found that liver bud hepatoblasts diverge from the two-dimensional lineage, and express epithelial migration signatures characteristic of organ budding, and a striking correspondence between the three-dimensional liver bud and fetal liver cells is found.
Abstract: Conventional two-dimensional differentiation from pluripotency fails to recapitulate cell interactions occurring during organogenesis. Three-dimensional organoids generate complex organ-like tissues; however, it is unclear how heterotypic interactions affect lineage identity. Here we use single-cell RNA sequencing to reconstruct hepatocyte-like lineage progression from pluripotency in two-dimensional culture. We then derive three-dimensional liver bud organoids by reconstituting hepatic, stromal, and endothelial interactions, and deconstruct heterogeneity during liver bud development. We find that liver bud hepatoblasts diverge from the two-dimensional lineage, and express epithelial migration signatures characteristic of organ budding. We benchmark three-dimensional liver buds against fetal and adult human liver single-cell RNA sequencing data, and find a striking correspondence between the three-dimensional liver bud and fetal liver cells. We use a receptor-ligand pairing analysis and a high-throughput inhibitor assay to interrogate signalling in liver buds, and show that vascular endothelial growth factor (VEGF) crosstalk potentiates endothelial network formation and hepatoblast differentiation. Our molecular dissection reveals interlineage communication regulating organoid development, and illuminates previously inaccessible aspects of human liver development.

Journal ArticleDOI
TL;DR: It is shown that H3K27ac HiChIP generates high-resolution contact maps of active enhancers and target genes in rare primary human T cell subtypes and coronary artery smooth muscle cells, providing a principled means of assigning molecular functions to autoimmune and cardiovascular disease risk variants.
Abstract: The challenge of linking intergenic mutations to target genes has limited molecular understanding of human diseases. Here we show that H3K27ac HiChIP generates high-resolution contact maps of active enhancers and target genes in rare primary human T cell subtypes and coronary artery smooth muscle cells. Differentiation of naive T cells into T helper 17 cells or regulatory T cells creates subtype-specific enhancer-promoter interactions, specifically at regions of shared DNA accessibility. These data provide a principled means of assigning molecular functions to autoimmune and cardiovascular disease risk variants, linking hundreds of noncoding variants to putative gene targets. Target genes identified with HiChIP are further supported by CRISPR interference and activation at linked enhancers, by the presence of expression quantitative trait loci, and by allele-specific enhancer loops in patient-derived primary cells. The majority of disease-associated enhancers contact genes beyond the nearest gene in the linear genome, leading to a fourfold increase in the number of potential target genes for autoimmune and cardiovascular diseases.

Journal ArticleDOI
14 Sep 2017-Nature
TL;DR: It is shown that m6A determines cell fate during the endothelial-to-haematopoietic transition (EHT) to specify the earliest haematopsic stem/progenitor cells (HSPCs) during zebrafish embryogenesis.
Abstract: N6-methyladenosine (m6A) has been identified as the most abundant modification on eukaryote messenger RNA (mRNA). Although the rapid development of high-throughput sequencing technologies has enabled insight into the biological functions of m6A modification, the function of m6A during vertebrate embryogenesis remains poorly understood. Here we show that m6A determines cell fate during the endothelial-to-haematopoietic transition (EHT) to specify the earliest haematopoietic stem/progenitor cells (HSPCs) during zebrafish embryogenesis. m6A-specific methylated RNA immunoprecipitation combined with high-throughput sequencing (MeRIP-seq) and m6A individual-nucleotide-resolution cross-linking and immunoprecipitation with sequencing (miCLIP-seq) analyses reveal conserved features on zebrafish m6A methylome and preferential distribution of m6A peaks near the stop codon with a consensus RRACH motif. In mettl3-deficient embryos, levels of m6A are significantly decreased and emergence of HSPCs is blocked. Mechanistically, we identify that the delayed YTHDF2-mediated mRNA decay of the arterial endothelial genes notch1a and rhoca contributes to this deleterious effect. The continuous activation of Notch signalling in arterial endothelial cells of mettl3-deficient embryos blocks EHT, thereby repressing the generation of the earliest HSPCs. Furthermore, knockdown of Mettl3 in mice confers a similar phenotype. Collectively, our findings demonstrate the critical function of m6A modification in the fate determination of HSPCs during vertebrate embryogenesis.

Journal ArticleDOI
TL;DR: The current understanding of the mechanisms that regulate RANK signaling during osteoclastogenesis is summarized and NFATc1 translocates into the nucleus where it induces numerous osteocline-specific target genes that are responsible for cell fusion and function.
Abstract: Osteoclasts are bone-resorbing cells that are derived from hematopoietic precursor cells and require macrophage-colony stimulating factor and receptor activator of nuclear factor-κB ligand (RANKL) for their survival, proliferation, differentiation, and activation. The binding of RANKL to its receptor RANK triggers osteoclast precursors to differentiate into osteoclasts. This process depends on RANKL-RANK signaling, which is temporally regulated by various adaptor proteins and kinases. Here we summarize the current understanding of the mechanisms that regulate RANK signaling during osteoclastogenesis. In the early stage, RANK signaling is mediated by recruiting adaptor molecules such as tumor necrosis factor receptor-associated factor 6 (TRAF6), which leads to the activation of mitogen-activated protein kinases (MAPKs), and the transcription factors nuclear factor-κB (NF-κB) and activator protein-1 (AP-1). Activated NF-κB induces the nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), which is the key osteoclastogenesis regulator. In the intermediate stage of signaling, the co-stimulatory signal induces Ca2+ oscillation via activated phospholipase Cγ2 (PLCγ2) together with c-Fos/AP-1, wherein Ca2+ signaling facilitates the robust production of NFATc1. In the late stage of osteoclastogenesis, NFATc1 translocates into the nucleus where it induces numerous osteoclast-specific target genes that are responsible for cell fusion and function.

Journal ArticleDOI
17 May 2017-Nature
TL;DR: The combined approach of morphogen-driven differentiation and transcription-factor-mediated cell fate conversion produces haem atopoietic stem and progenitor cells from pluripotent stem cells and holds promise for modelling haematopoetic disease in humanized mice and for therapeutic strategies in genetic blood disorders.
Abstract: A variety of tissue lineages can be differentiated from pluripotent stem cells by mimicking embryonic development through stepwise exposure to morphogens, or by conversion of one differentiated cell type into another by enforced expression of master transcription factors Here, to yield functional human haematopoietic stem cells, we perform morphogen-directed differentiation of human pluripotent stem cells into haemogenic endothelium followed by screening of 26 candidate haematopoietic stem-cell-specifying transcription factors for their capacity to promote multi-lineage haematopoietic engraftment in mouse hosts We recover seven transcription factors (ERG, HOXA5, HOXA9, HOXA10, LCOR, RUNX1 and SPI1) that are sufficient to convert haemogenic endothelium into haematopoietic stem and progenitor cells that engraft myeloid, B and T cells in primary and secondary mouse recipients Our combined approach of morphogen-driven differentiation and transcription-factor-mediated cell fate conversion produces haematopoietic stem and progenitor cells from pluripotent stem cells and holds promise for modelling haematopoietic disease in humanized mice and for therapeutic strategies in genetic blood disorders

Journal ArticleDOI
TL;DR: New advances in genome-wide technologies have paved the way towards an integrative view of epigenome dynamics during cell state transitions, and recent findings in embryonic stem cells highlight how the interplay between different epigenetic layers reshapes the transcriptional landscape.
Abstract: Chromatin, the template for epigenetic regulation, is a highly dynamic entity that is constantly reshaped during early development and differentiation. Epigenetic modification of chromatin provides the necessary plasticity for cells to respond to environmental and positional cues, and enables the maintenance of acquired information without changing the DNA sequence. The mechanisms involve, among others, chemical modifications of chromatin, changes in chromatin constituents and reconfiguration of chromatin interactions and 3D structure. New advances in genome-wide technologies have paved the way towards an integrative view of epigenome dynamics during cell state transitions, and recent findings in embryonic stem cells highlight how the interplay between different epigenetic layers reshapes the transcriptional landscape.

Journal ArticleDOI
TL;DR: Current research progress of EMT in embryonic development, cellular differentiation and reprogramming, and cancer progression are discussed, all of which are representative models for researches of stem cell biology in normal and in diseases.
Abstract: The lineage transition between epithelium and mesenchyme is a process known as epithelial-mesenchymal transition (EMT), by which polarized epithelial cells lose their adhesion property and obtain mesenchymal cell phenotypes. EMT is a biological process that is often involved in embryogenesis and diseases, such as cancer invasion and metastasis. The EMT and the reverse process, mesenchymal-epithelial transition (MET), also play important roles in stem cell differentiation and de-differentiation (or reprogramming). In this review, we will discuss current research progress of EMT in embryonic development, cellular differentiation and reprogramming, and cancer progression, all of which are representative models for researches of stem cell biology in normal and in diseases. Understanding of EMT and MET may help to identify specific markers to distinguish normal stem cells from cancer stem cells in future.

Journal ArticleDOI
TL;DR: An efficient (> 90%) and chemically defined method for directing the differentiation of human induced pluripotent stem cells into podocytes that express markers of the mature phenotype and that exhibit primary and secondary foot processes is demonstrated.
Abstract: An in vitro model of the human kidney glomerulus - the major site of blood filtration - could facilitate drug discovery and illuminate kidney-disease mechanisms. Microfluidic organ-on-a-chip technology has been used to model the human proximal tubule, yet a kidney-glomerulus-on-a-chip has not been possible because of the lack of functional human podocytes - the cells that regulate selective permeability in the glomerulus. Here, we demonstrate an efficient (> 90%) and chemically defined method for directing the differentiation of human induced pluripotent stem (hiPS) cells into podocytes that express markers of the mature phenotype (nephrin+, WT1+, podocin+, Pax2-) and that exhibit primary and secondary foot processes. We also show that the hiPS-cell-derived podocytes produce glomerular basement-membrane collagen and recapitulate the natural tissue/tissue interface of the glomerulus, as well as the differential clearance of albumin and inulin, when co-cultured with human glomerular endothelial cells in an organ-on-a-chip microfluidic device. The glomerulus-on-a-chip also mimics adriamycin-induced albuminuria and podocyte injury. This in vitro model of human glomerular function with mature human podocytes may facilitate drug development and personalized-medicine applications.

Journal ArticleDOI
16 Mar 2017-Nature
TL;DR: A critical role is revealed for the metabolic identity of Lgr5+ CBCs and Paneth cells in supporting optimal stem cell function, and mitochondria and reactive oxygen species signalling are identified as a driving force of cellular differentiation.
Abstract: The small intestinal epithelium self-renews every four or five days. Intestinal stem cells (Lgr5+ crypt base columnar cells (CBCs)) sustain this renewal and reside between terminally differentiated Paneth cells at the bottom of the intestinal crypt. Whereas the signalling requirements for maintaining stem cell function and crypt homeostasis have been well studied, little is known about how metabolism contributes to epithelial homeostasis. Here we show that freshly isolated Lgr5+ CBCs and Paneth cells from the mouse small intestine display different metabolic programs. Compared to Paneth cells, Lgr5+ CBCs display high mitochondrial activity. Inhibition of mitochondrial activity in Lgr5+ CBCs or inhibition of glycolysis in Paneth cells strongly affects stem cell function, as indicated by impaired organoid formation. In addition, Paneth cells support stem cell function by providing lactate to sustain the enhanced mitochondrial oxidative phosphorylation in the Lgr5+ CBCs. Mechanistically, we show that oxidative phosphorylation stimulates p38 MAPK activation by mitochondrial reactive oxygen species signalling, thereby establishing the mature crypt phenotype. Together, our results reveal a critical role for the metabolic identity of Lgr5+ CBCs and Paneth cells in supporting optimal stem cell function, and we identify mitochondria and reactive oxygen species signalling as a driving force of cellular differentiation.

Journal ArticleDOI
TL;DR: It is found that simulating the postnatal switch in metabolic substrates from carbohydrates to fatty acids promoted a switch in metabolism, DNA damage response, and cell cycle arrest in hPSC-CM, and under optimized maturation conditions, functional and molecular characterization revealed that a switch to fatty acid metabolism was a central driver of cardiac maturation.
Abstract: The mammalian heart undergoes maturation during postnatal life to meet the increased functional requirements of an adult. However, the key drivers of this process remain poorly defined. We are currently unable to recapitulate postnatal maturation in human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), limiting their potential as a model system to discover regenerative therapeutics. Here, we provide a summary of our studies, where we developed a 96-well device for functional screening in human pluripotent stem cell-derived cardiac organoids (hCOs). Through interrogation of >10,000 organoids, we systematically optimize parameters, including extracellular matrix (ECM), metabolic substrate, and growth factor conditions, that enhance cardiac tissue viability, function, and maturation. Under optimized maturation conditions, functional and molecular characterization revealed that a switch to fatty acid metabolism was a central driver of cardiac maturation. Under these conditions, hPSC-CMs were refractory to mitogenic stimuli, and we found that key proliferation pathways including β-catenin and Yes-associated protein 1 (YAP1) were repressed. This proliferative barrier imposed by fatty acid metabolism in hCOs could be rescued by simultaneous activation of both β-catenin and YAP1 using genetic approaches or a small molecule activating both pathways. These studies highlight that human organoids coupled with higher-throughput screening platforms have the potential to rapidly expand our knowledge of human biology and potentially unlock therapeutic strategies.

Journal ArticleDOI
TL;DR: It is demonstrated that primitive CML cells rely on upregulated oxidative metabolism for their survival, and combination treatment with imatinib and tigecycline, an antibiotic that inhibits mitochondrial protein translation, selectively eradicates CML LSCs both in vitro and in a xenotransplantation model of human CML.
Abstract: Treatment of chronic myeloid leukemia (CML) with imatinib mesylate and other second- and/or third-generation c-Abl-specific tyrosine kinase inhibitors (TKIs) has substantially extended patient survival. However, TKIs primarily target differentiated cells and do not eliminate leukemic stem cells (LSCs). Therefore, targeting minimal residual disease to prevent acquired resistance and/or disease relapse requires identification of new LSC-selective target(s) that can be exploited therapeutically. Considering that malignant transformation involves cellular metabolic changes, which may in turn render the transformed cells susceptible to specific assaults in a selective manner, we searched for such vulnerabilities in CML LSCs. We performed metabolic analyses on both stem cell-enriched (CD34+ and CD34+CD38-) and differentiated (CD34-) cells derived from individuals with CML, and we compared the signature of these cells with that of their normal counterparts. Through combination of stable isotope-assisted metabolomics with functional assays, we demonstrate that primitive CML cells rely on upregulated oxidative metabolism for their survival. We also show that combination treatment with imatinib and tigecycline, an antibiotic that inhibits mitochondrial protein translation, selectively eradicates CML LSCs both in vitro and in a xenotransplantation model of human CML. Our findings provide a strong rationale for investigation of the use of TKIs in combination with tigecycline to treat patients with CML with minimal residual disease.

Journal ArticleDOI
05 May 2017-Gene
TL;DR: The current knowledge about the different functions and roles of KLF4 in various tissue and organ systems is reviewed.