scispace - formally typeset
Search or ask a question
Topic

Cellular differentiation

About: Cellular differentiation is a research topic. Over the lifetime, 90966 publications have been published within this topic receiving 6099252 citations. The topic is also known as: Cellular differentiation & GO:0030154.


Papers
More filters
Journal ArticleDOI
31 Oct 2003-Cell
TL;DR: It is reported that bone morphogenetic proteins (BMPs) act in combination with LIF to sustain self-renewal and preserve multilineage differentiation, chimera colonization, and germline transmission properties.

2,233 citations

Journal ArticleDOI
23 Aug 2002-Cell
TL;DR: This work predicts regulatory targets for 14 Arabidopsis microRNAs (miRNAs) by identifying mRNAs with near complementarity and identifies members of transcription factor gene families involved in developmental patterning or cell differentiation.

2,221 citations

Journal ArticleDOI
TL;DR: The isolation, characterization, and preclinical and clinical application of adipose-derived stem cells (ASCs) are reviewed in this article.
Abstract: The emerging field of regenerative medicine will require a reliable source of stem cells in addition to biomaterial scaffolds and cytokine growth factors. Adipose tissue represents an abundant and accessible source of adult stem cells with the ability to differentiate along multiple lineage pathways. The isolation, characterization, and preclinical and clinical application of adipose-derived stem cells (ASCs) are reviewed in this article.

2,189 citations

Journal ArticleDOI
TL;DR: The in vitro developmental potential of mouse blastocyst-derived embryonic stem cell lines and the consistency with which the cells express this potential are presented as aspects which open up new approaches to the investigation of embryogenesis.
Abstract: The in vitro developmental potential of mouse blastocyst-derived embryonic stem cell lines has been investigated. From 3 to 8 days of suspension culture the cells form complex embryoid bodies with endoderm, basal lamina, mesoderm and ectoderm. Many are morphologically similar to embryos of the 6- to 8-day egg-cylinder stage. From 8 to 10 days of culture about half of the embryoid bodies expand into large cystic structures containing alphafoetoprotein and transferrin, thus being analagous to the visceral yolk sac of the postimplantation embryo. Approximately one third of the cystic embryoid bodies develop myocardium and when cultured in the presence of human cord serum, 30% develop blood islands, thereby exhibiting a high level of organized development at a very high frequency. Furthermore, most embryonic stem cell lines observed exhibit similar characteristics. The in vitro developmental potential of embryonic stem cell lines and the consistency with which the cells express this potential are presented as aspects which open up new approaches to the investigation of embryogenesis.

2,169 citations

Journal ArticleDOI
08 Feb 2007-Nature
TL;DR: It is indicated that p53 loss can be required for the maintenance of aggressive carcinomas, and illustrates how the cellular senescence program can act together with the innate immune system to potently limit tumour growth.
Abstract: Although cancer arises from a combination of mutations in oncogenes and tumour suppressor genes, the extent to which tumour suppressor gene loss is required for maintaining established tumours is poorly understood. p53 is an important tumour suppressor that acts to restrict proliferation in response to DNA damage or deregulation of mitogenic oncogenes, by leading to the induction of various cell cycle checkpoints, apoptosis or cellular senescence. Consequently, p53 mutations increase cell proliferation and survival, and in some settings promote genomic instability and resistance to certain chemotherapies. To determine the consequences of reactivating the p53 pathway in tumours, we used RNA interference (RNAi) to conditionally regulate endogenous p53 expression in a mosaic mouse model of liver carcinoma. We show that even brief reactivation of endogenous p53 in p53-deficient tumours can produce complete tumour regressions. The primary response to p53 was not apoptosis, but instead involved the induction of a cellular senescence program that was associated with differentiation and the upregulation of inflammatory cytokines. This program, although producing only cell cycle arrest in vitro, also triggered an innate immune response that targeted the tumour cells in vivo, thereby contributing to tumour clearance. Our study indicates that p53 loss can be required for the maintenance of aggressive carcinomas, and illustrates how the cellular senescence program can act together with the innate immune system to potently limit tumour growth.

2,166 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
95% related
Stem cell
129.1K papers, 5.9M citations
95% related
Transcription factor
82.8K papers, 5.4M citations
94% related
Regulation of gene expression
85.4K papers, 5.8M citations
94% related
Cell culture
133.3K papers, 5.3M citations
93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023416
2022986
20211,731
20202,011
20192,204