scispace - formally typeset
Search or ask a question
Topic

Cellular differentiation

About: Cellular differentiation is a research topic. Over the lifetime, 90966 publications have been published within this topic receiving 6099252 citations. The topic is also known as: Cellular differentiation & GO:0030154.


Papers
More filters
Journal ArticleDOI
22 Apr 1994-Cell
TL;DR: Stable or transient transfection of Blimp-1 into B cell lymphoma lines leads to the expression of many of the phenotypic changes associated with B cell differentiation into an early plasma cell stage, including induction of J chain message and immunoglobulin secretion, up-regulation of Syndecan-1, and increased cell size and granularity.

782 citations

Journal ArticleDOI
TL;DR: In this review an extensive examination of historical and recent literature pertaining to limb development and mesenchymal condensation has been undertaken, with a focus on the development of cartilage.

782 citations

Journal ArticleDOI
TL;DR: In this article, the lateral mesoderm-specific lncRNA Fendrr was found to be essential for proper heart and body wall development in the mouse, and the upregulation of several transcription factors was associated with a drastic reduction in PRC2 occupancy along with decreased H3K27 trimethylation.

781 citations

Journal ArticleDOI
TL;DR: The enhancement of FAO provides a mechanistic explanation for the longevity of T cells receiving PD-1 signals in patients with chronic infections and cancer, and for their capacity to be reinvigorated byPD-1 blockade.
Abstract: During activation, T cells undergo metabolic reprogramming, which imprints distinct functional fates. We determined that on PD-1 ligation, activated T cells are unable to engage in glycolysis or amino acid metabolism but have an increased rate of fatty acid β-oxidation (FAO). PD-1 promotes FAO of endogenous lipids by increasing expression of CPT1A, and inducing lipolysis as indicated by elevation of the lipase ATGL, the lipolysis marker glycerol and release of fatty acids. Conversely, CTLA-4 inhibits glycolysis without augmenting FAO, suggesting that CTLA-4 sustains the metabolic profile of non-activated cells. Because T cells utilize glycolysis during differentiation to effectors, our findings reveal a metabolic mechanism responsible for PD-1-mediated blockade of T-effector cell differentiation. The enhancement of FAO provides a mechanistic explanation for the longevity of T cells receiving PD-1 signals in patients with chronic infections and cancer, and for their capacity to be reinvigorated by PD-1 blockade.

780 citations

Journal ArticleDOI
Jacques Kruh1
TL;DR: Sodium butyrate, at millimolar concentrations, when added to cell cultures produces many morphological and biochemical modifications in a reversible manner that concern regulatory mechanisms of gene expression and cell growth.
Abstract: Sodium butyrate, at millimolar concentrations, when added to cell cultures produces many morphological and biochemical modifications in a reversible manner. Some of them occur in all cell lines. They concern regulatory mechanisms of gene expression and cell growth: an hyperacetylation of histone resulting from an inhibition of histone deacetylase and an arrest of cell proliferation are almost constantly observed. Some other modifications vary from one cell type to another: induction of proteins, including enzymes, hormones, hemoglobin, inhibition of cell differentiation, reversion of transformed characteristics of cells to normal morphological and biochemical pattern, increase in interferon antiviral efficiency and induction of integrated viruses. Most if not all these effects of butyrate could result from histone hyperacetylation, from changes in chromatin structures as measured by accessibility to DNases and from modifications in cytoskeleton assembly. We do not know at the present time whether butyrate acts on a very specific target site in cell or if it acts on several cell components.

780 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
95% related
Stem cell
129.1K papers, 5.9M citations
95% related
Transcription factor
82.8K papers, 5.4M citations
94% related
Regulation of gene expression
85.4K papers, 5.8M citations
94% related
Cell culture
133.3K papers, 5.3M citations
93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023416
2022986
20211,731
20202,011
20192,204