scispace - formally typeset
Search or ask a question
Topic

Cellular differentiation

About: Cellular differentiation is a research topic. Over the lifetime, 90966 publications have been published within this topic receiving 6099252 citations. The topic is also known as: Cellular differentiation & GO:0030154.


Papers
More filters
Journal ArticleDOI
10 Jun 2010-Nature
TL;DR: In vitro-derived cardiomyocytes from LEOPARD syndrome iPSCs are larger, have a higher degree of sarcomeric organization and preferential localization of NFATC4 in the nucleus when compared with cardiomeocytes derived from human embryonic stem cells or wild-type iPSC derived from a healthy brother of one of the LEopARD syndrome patients, which correlate with a potential hypertrophic state.
Abstract: The generation of reprogrammed induced pluripotent stem cells (iPSCs) from patients with defined genetic disorders holds the promise of increased understanding of the aetiologies of complex diseases and may also facilitate the development of novel therapeutic interventions. We have generated iPSCs from patients with LEOPARD syndrome (an acronym formed from its main features; that is, lentigines, electrocardiographic abnormalities, ocular hypertelorism, pulmonary valve stenosis, abnormal genitalia, retardation of growth and deafness), an autosomal-dominant developmental disorder belonging to a relatively prevalent class of inherited RAS-mitogen-activated protein kinase signalling diseases, which also includes Noonan syndrome, with pleomorphic effects on several tissues and organ systems. The patient-derived cells have a mutation in the PTPN11 gene, which encodes the SHP2 phosphatase. The iPSCs have been extensively characterized and produce multiple differentiated cell lineages. A major disease phenotype in patients with LEOPARD syndrome is hypertrophic cardiomyopathy. We show that in vitro-derived cardiomyocytes from LEOPARD syndrome iPSCs are larger, have a higher degree of sarcomeric organization and preferential localization of NFATC4 in the nucleus when compared with cardiomyocytes derived from human embryonic stem cells or wild-type iPSCs derived from a healthy brother of one of the LEOPARD syndrome patients. These features correlate with a potential hypertrophic state. We also provide molecular insights into signalling pathways that may promote the disease phenotype.

695 citations

Journal ArticleDOI
01 Apr 2004-Immunity
TL;DR: This work shows that mice with a targeted deletion of T-bet have a profound, stem cell-intrinsic defect in their ability to generate mature NK and Valpha14i NKT cells.

694 citations

Journal ArticleDOI
23 Oct 2008-Nature
TL;DR: In this article, the authors show that concomitant central nervous system (CNS)-specific deletion of p53 and Pten in the mouse CNS generates a penetrant acute-onset high-grade malignant glioma phenotype with notable clinical, pathological and molecular resemblance to primary GBM in humans.
Abstract: Glioblastoma (GBM) is a highly lethal brain tumour presenting as one of two subtypes with distinct clinical histories and molecular profiles. The primary GBM subtype presents acutely as a high-grade disease that typically harbours mutations in EGFR, PTEN and INK4A/ARF (also known as CDKN2A), and the secondary GBM subtype evolves from the slow progression of a low-grade disease that classically possesses PDGF and TP53 events. Here we show that concomitant central nervous system (CNS)-specific deletion of p53 and Pten in the mouse CNS generates a penetrant acute-onset high-grade malignant glioma phenotype with notable clinical, pathological and molecular resemblance to primary GBM in humans. This genetic observation prompted TP53 and PTEN mutational analysis in human primary GBM, demonstrating unexpectedly frequent inactivating mutations of TP53 as well as the expected PTEN mutations. Integrated transcriptomic profiling, in silico promoter analysis and functional studies of murine neural stem cells (NSCs) established that dual, but not singular, inactivation of p53 and Pten promotes an undifferentiated state with high renewal potential and drives increased Myc protein levels and its associated signature. Functional studies validated increased Myc activity as a potent contributor to the impaired differentiation and enhanced renewal of NSCs doubly null for p53 and Pten (p53(-/-) Pten(-/-)) as well as tumour neurospheres (TNSs) derived from this model. Myc also serves to maintain robust tumorigenic potential of p53(-/-) Pten(-/-) TNSs. These murine modelling studies, together with confirmatory transcriptomic/promoter studies in human primary GBM, validate a pathogenetic role of a common tumour suppressor mutation profile in human primary GBM and establish Myc as an important target for cooperative actions of p53 and Pten in the regulation of normal and malignant stem/progenitor cell differentiation, self-renewal and tumorigenic potential.

693 citations

Journal ArticleDOI
TL;DR: The results, which demonstrate that Dex conditions the differentiation of human bone marrow osteogenic stromal cells into osteoblast-like cells, support the hypothesis of a permissive effect of glucocorticoids in ensuring an adequate supply of mature osteOBlast populations.
Abstract: Human bone marrow stromal cells were examined for their osteogenic potential in an in vitro cell culture system Dexamethasone (Dex) treatment induced morphological transformation of these cells from an elongated to a more cuboidal shape, increased their alkaline phosphatase activity and cAMP responses to PTH and prostaglandin E2, and was essential for mineralization of the extracellular matrix Dex-induced differentiation of human bone marrow stromal cells was apparent after 2-3 days of treatment and reached a maximum at 7-14 days, as judged by alkaline phosphatase activity, although induction of osteocalcin by 1,25-dihydroxyvitamin D3 was attenuated by Dex Withdrawal of Dex resulted in an enhancement of the 1,25-dihydroxyvitamin D3-induced secretion of osteocalcin, whereas alkaline phosphatase activity and the cAMP response to PTH remained at prewithdrawal levels The steady state mRNA level of osteonectin was not affected by Dex Our results, which demonstrate that Dex conditions the differentiation of human bone marrow osteogenic stromal cells into osteoblast-like cells, support the hypothesis of a permissive effect of glucocorticoids in ensuring an adequate supply of mature osteoblast populations Furthermore, the established human bone marrow stromal cell culture provides a good model of an in vitro system to study the regulation of differentiation of human bone osteoprogenitor cells

693 citations

Journal ArticleDOI
15 Oct 2000-Blood
TL;DR: It is concluded that the blood of patients with CLL contains cells that can differentiate into adherent nurse-like cells that protect leukemia cells from undergoing spontaneous apoptosis through an SDF-1–dependent mechanism.

692 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
95% related
Stem cell
129.1K papers, 5.9M citations
95% related
Transcription factor
82.8K papers, 5.4M citations
94% related
Regulation of gene expression
85.4K papers, 5.8M citations
94% related
Cell culture
133.3K papers, 5.3M citations
93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023416
2022986
20211,731
20202,011
20192,204