scispace - formally typeset
Search or ask a question
Topic

Cellular differentiation

About: Cellular differentiation is a research topic. Over the lifetime, 90966 publications have been published within this topic receiving 6099252 citations. The topic is also known as: Cellular differentiation & GO:0030154.


Papers
More filters
Journal ArticleDOI
TL;DR: Results indicate that ZEB1 triggers an microRNA‐mediated feedforward loop that stabilizes EMT and promotes invasion of cancer cells, and thus explain the strong intratumorous heterogeneity observed in many human cancers.
Abstract: The embryonic programme 'epithelial-mesenchymal transition' (EMT) is thought to promote malignant tumour progression. The transcriptional repressor zinc-finger E-box binding homeobox 1 (ZEB1) is a crucial inducer of EMT in various human tumours, and was recently shown to promote invasion and metastasis of tumour cells. Here, we report that ZEB1 directly suppresses transcription of microRNA-200 family members miR-141 and miR-200c, which strongly activate epithelial differentiation in pancreatic, colorectal and breast cancer cells. Notably, the EMT activators transforming growth factor beta2 and ZEB1 are the predominant targets downregulated by these microRNAs. These results indicate that ZEB1 triggers an microRNA-mediated feedforward loop that stabilizes EMT and promotes invasion of cancer cells. Alternatively, depending on the environmental trigger, this loop might switch and induce epithelial differentiation, and thus explain the strong intratumorous heterogeneity observed in many human cancers.

1,657 citations

Journal ArticleDOI
TL;DR: Analysis of an Ihh null mutant and results suggest a model in which Ihh coordinates diverse aspects of skeletal morphogenesis through PTHrP-dependent and independent processes.
Abstract: The mechanisms that control cell proliferation and cell differentiation during morphogenesis of the endochondral skeleton of vertebrates are poorly understood. Indian hedgehog (Ihh) signaling from prehypertrophic chondrocytes has been implicated in the control of chondrocyte maturation by way of feedback control of a second secreted factor parathyroid hormone-related peptide (PTHrP) at the articular surfaces. Analysis of an Ihh null mutant suggests a more extensive role for Ihh in skeletal development. Mutants display markedly reduced chondrocyte proliferation, maturation of chondrocytes at inappropriate position, and a failure of osteoblast development in endochondral bones. Together, the results suggest a model in which Ihh coordinates diverse aspects of skeletal morphogenesis through PTHrP-dependent and independent processes.

1,657 citations

Journal ArticleDOI
TL;DR: The results identify Sox9 as the first transcription factor that is essential for chondrocyte differentiation and cartilage formation and Sox9 is identified as a regulator of the chondROcyte lineage.
Abstract: Chondrogenesis results in the formation of cartilages, initial skeletal elements that can serve as templates for endochondral bone formation Cartilage formation begins with the condensation of mesenchyme cells followed by their differentiation into chondrocytes Although much is known about the terminal differentiation products that are expressed by chondrocytes, little is known about the factors that specify the chondrocyte lineage SOX9 is a high-mobility-group (HMG) domain transcription factor that is expressed in chondrocytes and other tissues In humans, SOX9 haploinsufficiency results in campomelic dysplasia, a lethal skeletal malformation syndrome, and XY sex reversal During embryogenesis, Sox9 is expressed in all cartilage primordia and cartilages, coincident with the expression of the collagen alpha1(II) gene (Col2a1) Sox9 is also expressed in other tissues, including the central nervous and urogenital systems Sox9 binds to essential sequences in the Col2a1 and collagen alpha2(XI) gene (Col11a2) chondrocyte-specific enhancers and can activate these enhancers in non-chondrocytic cells Here, Sox9 is identified as a regulator of the chondrocyte lineage In mouse chimaeras, Sox9-/- cells are excluded from all cartilages but are present as a juxtaposed mesenchyme that does not express the chondrocyte-specific markers Col2a1, Col9a2, Col11a2 and Agc This exclusion occurred cell autonomously at the condensing mesenchyme stage of chondrogenesis Moreover, no cartilage developed in teratomas derived from Sox9-/- embryonic stem (ES) cells Our results identify Sox9 as the first transcription factor that is essential for chondrocyte differentiation and cartilage formation

1,655 citations

Journal ArticleDOI
03 Jul 2013-Nature
TL;DR: This is the first report demonstrating the generation of a functional human organ from pluripotent stem cells by transplantation of liver buds created in vitro (iPSC-LBs), and provides a promising new approach to study regenerative medicine.
Abstract: A critical shortage of donor organs for treating end-stage organ failure highlights the urgent need for generating organs from human induced pluripotent stem cells (iPSCs). Despite many reports describing functional cell differentiation, no studies have succeeded in generating a three-dimensional vascularized organ such as liver. Here we show the generation of vascularized and functional human liver from human iPSCs by transplantation of liver buds created in vitro (iPSC-LBs). Specified hepatic cells (immature endodermal cells destined to track the hepatic cell fate) self-organized into three-dimensional iPSC-LBs by recapitulating organogenetic interactions between endothelial and mesenchymal cells. Immunostaining and gene-expression analyses revealed a resemblance between in vitro grown iPSC-LBs and in vivo liver buds. Human vasculatures in iPSC-LB transplants became functional by connecting to the host vessels within 48 hours. The formation of functional vasculatures stimulated the maturation of iPSC-LBs into tissue resembling the adult liver. Highly metabolic iPSC-derived tissue performed liver-specific functions such as protein production and human-specific drug metabolism without recipient liver replacement. Furthermore, mesenteric transplantation of iPSC-LBs rescued the drug-induced lethal liver failure model. To our knowledge, this is the first report demonstrating the generation of a functional human organ from pluripotent stem cells. Although efforts must ensue to translate these techniques to treatments for patients, this proof-of-concept demonstration of organ-bud transplantation provides a promising new approach to study regenerative medicine.

1,653 citations

Journal ArticleDOI
01 Jan 2006-Blood
TL;DR: The results further support the potential therapeutic use of hMSCs in immune-mediated disorders, including those in which B cells play a major role.

1,652 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
95% related
Stem cell
129.1K papers, 5.9M citations
95% related
Transcription factor
82.8K papers, 5.4M citations
94% related
Regulation of gene expression
85.4K papers, 5.8M citations
94% related
Cell culture
133.3K papers, 5.3M citations
93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023416
2022986
20211,731
20202,011
20192,204