scispace - formally typeset
Search or ask a question
Topic

Cellular differentiation

About: Cellular differentiation is a research topic. Over the lifetime, 90966 publications have been published within this topic receiving 6099252 citations. The topic is also known as: Cellular differentiation & GO:0030154.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that reprograming of juvenile human primary keratinocytes by retroviral transduction with OCT4, SOX2, KLF4 and c-MYC is at least 100-fold more efficient and twofold faster compared with reprogramming of human fibroblasts.
Abstract: The utility of induced pluripotent stem (iPS) cells for investigating the molecular logic of pluripotency and for eventual clinical application is limited by the low efficiency of current methods for reprogramming. Here we show that reprogramming of juvenile human primary keratinocytes by retroviral transduction with OCT4, SOX2, KLF4 and c-MYC is at least 100-fold more efficient and twofold faster compared with reprogramming of human fibroblasts. Keratinocyte-derived iPS (KiPS) cells appear indistinguishable from human embryonic stem cells in colony morphology, growth properties, expression of pluripotency-associated transcription factors and surface markers, global gene expression profiles and differentiation potential in vitro and in vivo. To underscore the efficiency and practicability of this technology, we generated KiPS cells from single adult human hairs. Our findings provide an experimental model for investigating the bases of cellular reprogramming and highlight potential advantages of using keratinocytes to generate patient-specific iPS cells.

1,464 citations

Journal ArticleDOI
TL;DR: This study describes the first demonstration, through clonal and population analyses in vitro, of a mammalian CNS stem cell that proliferates in response to an identified growth factor (EGF) and produces the three principal cell types of the CNS.

1,462 citations

Journal ArticleDOI
TL;DR: These findings suggest that full acquisition of pathogenic function by effector TH-17 cells is mediated by IL-23 rather than by TGF-β and IL-6, which 'drive' initial lineage commitment but also 'restrain' the pathogenic potential of TH- 17 cells.
Abstract: Studies have shown that transforming growth factor-beta (TGF-beta) and interleukin 6 (IL-6) are required for the lineage commitment of pathogenic IL-17-producing T helper cells (T(H)-17 cells). Unexpectedly, here we found that stimulation of myelin-reactive T cells with TGF-beta plus IL-6 completely abrogated their pathogenic function despite upregulation of IL-17 production. Cells stimulated with TGF-beta plus IL-6 were present in the spleen as well as the central nervous system, but they failed to upregulate the proinflammatory chemokines crucial for central nervous system inflammation. In addition, these cells produced IL-10, which has potent anti-inflammatory activities. In contrast, stimulation with IL-23 promoted expression of IL-17 and proinflammatory chemokines but not IL-10. Hence, TGF-beta and IL-6 'drive' initial lineage commitment but also 'restrain' the pathogenic potential of T(H)-17 cells. Our findings suggest that full acquisition of pathogenic function by effector T(H)-17 cells is mediated by IL-23 rather than by TGF-beta and IL-6.

1,458 citations

Journal ArticleDOI
TL;DR: It is reported here that stem cells isolated from testes of donor male mice will repopulate sterile testes when injected into seminiferous tubules and may prove useful as a tool for biomedical science and biotechnology.
Abstract: In the adult male, a population of diploid stem-cell spermatogonia continuously undergoes self-renewal and produces progeny cells, which initiate the complex process of cellular differentiation that results in mature spermatozoa. We report here that stem cells isolated from testes of donor male mice will repopulate sterile testes when injected into seminiferous tubules. Donor cell spermatogenesis in recipient testes showed normal morpholigical characteristics and produced mature spermatozoa. This methodology, besides opening new avenues of basic research into spermatogenesis and stem-cell self-renewal, may prove useful as a tool for biomedical science and biotechnology.

1,457 citations

Journal ArticleDOI
26 Jul 1968-Science
TL;DR: Rat glial tumors, induced by injections of N-nitrosomethylurea, were plated and propagated in culture, and among a few cell strains obtained, one clone contains S-100 protein, which is unique to brain in vertebrates.
Abstract: Rat glial tumors, induced by injections of N-nitrosomethylurea, were plated and propagated in culture. Among a few cell strains obtained, one clone contains S-100 protein, which is unique to brain in vertebrates. Stationary-phase cultures contain approximately ten times more S-100 protein per cell than exponentially growing cells. When injected into newborn rats, cells producing S-100 grew as a glial tumor, which contained S-100 protein.

1,454 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
95% related
Stem cell
129.1K papers, 5.9M citations
95% related
Transcription factor
82.8K papers, 5.4M citations
94% related
Regulation of gene expression
85.4K papers, 5.8M citations
94% related
Cell culture
133.3K papers, 5.3M citations
93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023416
2022986
20211,731
20202,011
20192,204