scispace - formally typeset
Search or ask a question
Topic

Cellular differentiation

About: Cellular differentiation is a research topic. Over the lifetime, 90966 publications have been published within this topic receiving 6099252 citations. The topic is also known as: Cellular differentiation & GO:0030154.


Papers
More filters
Journal ArticleDOI
04 Apr 2008-Science
TL;DR: The results identify Lin28 as a negative regulator of miRNA biogenesis and suggest that Lin28 may play a central role in blocking miRNA-mediated differentiation in stem cells and in certain cancers.
Abstract: MicroRNAs (miRNAs) play critical roles in development, and dysregulation of miRNA expression has been observed in human malignancies. Recent evidence suggests that the processing of several primary miRNA transcripts (pri-miRNAs) is blocked posttranscriptionally in embryonic stem cells, embryonal carcinoma cells, and primary tumors. Here we show that Lin28, a developmentally regulated RNA binding protein, selectively blocks the processing of pri-let-7 miRNAs in embryonic cells. Using in vitro and in vivo studies, we found that Lin28 is necessary and sufficient for blocking Microprocessor-mediated cleavage of pri-let-7 miRNAs. Our results identify Lin28 as a negative regulator of miRNA biogenesis and suggest that Lin28 may play a central role in blocking miRNA-mediated differentiation in stem cells and in certain cancers.

1,438 citations

Journal ArticleDOI
04 Apr 1997-Science
TL;DR: The development of therapies for the reconstruction of the diseased or injured brain will be guided by the understanding of the origin and stability of cell type in the central nervous system.
Abstract: In the vertebrate central nervous system, multipotential cells have been identified in vitro and in vivo. Defined mitogens cause the proliferation of multipotential cells in vitro, the magnitude of which is sufficient to account for the number of cells in the brain. Factors that control the differentiation of fetal stem cells to neurons and glia have been defined in vitro, and multipotential cells with similar signaling logic can be cultured from the adult central nervous system. Transplanting cells to new sites emphasizes that neuroepithelial cells have the potential to integrate into many brain regions. These results focus attention on how information in external stimuli is translated into the number and types of differentiated cells in the brain. The development of therapies for the reconstruction of the diseased or injured brain will be guided by our understanding of the origin and stability of cell type in the central nervous system.

1,437 citations

Journal ArticleDOI
TL;DR: The role of p38 as a signal transduction mediator is focused on and the evidence linking p38 to inflammation, cell cycle, cell death, development, cell differentiation, senescence and tumorigenesis in specific cell types is examined.
Abstract: The family members of the mitogen-activated protein (MAP) kinases mediate a wide variety of cellular behaviors in response to extracellular stimuli. One of the four main sub-groups, the p38 group of MAP kinases, serve as a nexus for signal transduction and play a vital role in numerous biological processes. In this review, we highlight the known characteristics and components of the p38 pathway along with the mechanism and consequences of p38 activation. We focus on the role of p38 as a signal transduction mediator and examine the evidence linking p38 to inflammation, cell cycle, cell death, development, cell differentiation, senescence and tumorigenesis in specific cell types. Upstream and downstream components of p38 are described and questions remaining to be answered are posed. Finally, we propose several directions for future research on p38.

1,436 citations

Journal ArticleDOI
01 Apr 1980-Cell
TL;DR: The precise dissection of cellular mechanisms and interactions involved in the generation of human T cell responses has been facilitated in recent years by advances in four areas: first, the development of in this paper.

1,435 citations

Journal ArticleDOI
27 Aug 2010-Science
TL;DR: Using a bioengineered substrate to recapitulate key biophysical and biochemical niche features in conjunction with a highly automated single-cell tracking algorithm, it is shown that substrate elasticity is a potent regulator of MuSC fate in culture.
Abstract: Stem cells that naturally reside in adult tissues, such as muscle stem cells (MuSCs), exhibit robust regenerative capacity in vivo that is rapidly lost in culture. Using a bioengineered substrate to recapitulate key biophysical and biochemical niche features in conjunction with a highly automated single-cell tracking algorithm, we show that substrate elasticity is a potent regulator of MuSC fate in culture. Unlike MuSCs on rigid plastic dishes (approximately 10(6) kilopascals), MuSCs cultured on soft hydrogel substrates that mimic the elasticity of muscle (12 kilopascals) self-renew in vitro and contribute extensively to muscle regeneration when subsequently transplanted into mice and assayed histologically and quantitatively by noninvasive bioluminescence imaging. Our studies provide novel evidence that by recapitulating physiological tissue rigidity, propagation of adult muscle stem cells is possible, enabling future cell-based therapies for muscle-wasting diseases.

1,428 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
95% related
Stem cell
129.1K papers, 5.9M citations
95% related
Transcription factor
82.8K papers, 5.4M citations
94% related
Regulation of gene expression
85.4K papers, 5.8M citations
94% related
Cell culture
133.3K papers, 5.3M citations
93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023416
2022986
20211,731
20202,011
20192,204