scispace - formally typeset
Search or ask a question
Topic

Cellular differentiation

About: Cellular differentiation is a research topic. Over the lifetime, 90966 publications have been published within this topic receiving 6099252 citations. The topic is also known as: Cellular differentiation & GO:0030154.


Papers
More filters
Journal ArticleDOI
TL;DR: This action of dimethyl sulfoxide, which was reversible, may represent the derepression of leukemic cells to permit their maturation in cloned line of murine virus-induced erythroleukemia.
Abstract: Cells of a cloned line of murine virus-induced erythroleukemia were stimulated to differentiate along the erythroid pathway by dimethyl sulfoxide at concentrations that did not inhibit growth. A rise in the number of benzidine-positive normoblasts was accompanied by increased synthesis of heme and hemoglobin and a decrease in the malignancy of the cells. This action of dimethyl sulfoxide, which was reversible, may represent the derepression of leukemic cells to permit their maturation.

1,175 citations

Journal ArticleDOI
TL;DR: New insulin-secreting cell lines established from cells isolated from an x-ray-induced rat transplantable insulinoma indicate that INS-1 cells have remained stable and retain a high degree of differentiation which should make them a suitable model for studying various aspects of beta-cell function.
Abstract: New insulin-secreting cell lines (INS-1 and INS-2) were established from cells isolated from an x-ray-induced rat transplantable insulinoma. The continuous growth of these cells was found to be dependent on the reducing agent 2-mercaptoethanol. Removal of this thiol compound caused a 15-fold drop in total cellular glutathione levels. These cells proliferated slowly (population doubling time about 100 h) and, in general, showed morphological characteristics typical of native beta-cells. Most cells stained positive for insulin and did not react with antibodies against the other islet hormones. The content of immunoreactive insulin was about 8 micrograms/10(6) cells, corresponding to 20% of the native beta-cell content. These cells synthesized both proinsulin I and II and displayed conversion rates of the two precursor hormones similar to those observed in rat islets. However, glucose failed to stimulate the rate of proinsulin biosynthesis. In static incubations, glucose stimulated insulin secretion from floating cell clusters or from attached cells. Under perifusion conditions, 10 mM but not 1 mM glucose enhanced secretion 2.2-fold. In the presence of forskolin and 3-isobutyl-1-methylxanthine, increase of glucose concentration from 2.8-20 mM caused a 4-fold enhancement of the rate of secretion. Glucose also depolarized INS-1 cells and raised the concentration of cytosolic Ca2+. This suggests that glucose is still capable of eliciting part of the ionic events at the plasma membrane, which leads to insulin secretion. The structural and functional characteristics of INS-1 cells remained unchanged over a period of 2 yr (about 80 passages). Although INS-2 cells have not been fully characterized, their insulin content was similar to that of INS-1 cells and they also remain partially sensitive to glucose as a secretagogue. INS-1 cells retain beta-cell surface antigens, as revealed by reactivity with the antigangloside monoclonal antibodies R2D6 and A2B5. These findings indicate that INS-1 cells have remained stable and retain a high degree of differentiation which should make them a suitable model for studying various aspects of beta-cell function.

1,169 citations

Journal ArticleDOI
TL;DR: Substantial hypermethylation and hypomethylation of cytosine-phosphate-guanine island shores in nine human iPS cell lines as compared to their parental fibroblasts are found, suggesting two mechanisms for epigenetic reprogramming in iPS cells and cancer.
Abstract: Induced pluripotent stem (iPS) cells are derived by epigenetic reprogramming, but their DNA methylation patterns have not yet been analyzed on a genome-wide scale. Here, we find substantial hypermethylation and hypomethylation of cytosine-phosphate-guanine (CpG) island shores in nine human iPS cell lines as compared to their parental fibroblasts. The differentially methylated regions (DMRs) in the reprogrammed cells (denoted R-DMRs) were significantly enriched in tissue-specific (T-DMRs; 2.6-fold, P < 10(-4)) and cancer-specific DMRs (C-DMRs; 3.6-fold, P < 10(-4)). Notably, even though the iPS cells are derived from fibroblasts, their R-DMRs can distinguish between normal brain, liver and spleen cells and between colon cancer and normal colon cells. Thus, many DMRs are broadly involved in tissue differentiation, epigenetic reprogramming and cancer. We observed colocalization of hypomethylated R-DMRs with hypermethylated C-DMRs and bivalent chromatin marks, and colocalization of hypermethylated R-DMRs with hypomethylated C-DMRs and the absence of bivalent marks, suggesting two mechanisms for epigenetic reprogramming in iPS cells and cancer.

1,166 citations

Journal ArticleDOI
16 Nov 2006-Nature
TL;DR: This tight protein network seems to function as a cellular module dedicated to pluripotency in mouse ES cells, linked to multiple co-repressor pathways and composed of numerous proteins whose encoding genes are putative direct transcriptional targets of its members.
Abstract: Embryonic stem (ES) cells are pluripotent and of therapeutic potential in regenerative medicine. Understanding pluripotency at the molecular level should illuminate fundamental properties of stem cells and the process of cellular reprogramming. Through cell fusion the embryonic cell phenotype can be imposed on somatic cells, a process promoted by the homeodomain protein Nanog, which is central to the maintenance of ES cell pluripotency. Nanog is thought to function in concert with other factors such as Oct4 (ref. 8) and Sox2 (ref. 9) to establish ES cell identity. Here we explore the protein network in which Nanog operates in mouse ES cells. Using affinity purification of Nanog under native conditions followed by mass spectrometry, we have identified physically associated proteins. In an iterative fashion we also identified partners of several Nanog-associated proteins (including Oct4), validated the functional relevance of selected newly identified components and constructed a protein interaction network. The network is highly enriched for nuclear factors that are individually critical for maintenance of the ES cell state and co-regulated on differentiation. The network is linked to multiple co-repressor pathways and is composed of numerous proteins whose encoding genes are putative direct transcriptional targets of its members. This tight protein network seems to function as a cellular module dedicated to pluripotency.

1,163 citations

Journal ArticleDOI
TL;DR: It is shown that mice deficient in Hes1 (encoding Hes-1) display severe pancreatic hypoplasia caused by depletion of pancreatic epithelial precursors due to accelerated differentiation of post-mitotic endocrine cells expressing glucagon, and upregulation of several bHLH components is associated with precocious and excessive differentiation of multiple endocrine cell types in the developing stomach and gut, showing that Hes- 1 operates as a general negative regulator of endodermal endocrine differentiation.
Abstract: Development of endocrine cells in the endoderm involves Atonal and Achaete/Scute-related basic helix-loop-helix (bHLH) proteins. These proteins also serve as neuronal determination and differentiation factors, and are antagonized by the Notch pathway partly acting through Hairy and Enhancer-of-split (HES)-type proteins. Here we show that mice deficient in Hes1 (encoding Hes-1) display severe pancreatic hypoplasia caused by depletion of pancreatic epithelial precursors due to accelerated differentiation of post-mitotic endocrine cells expressing glucagon. Moreover, upregulation of several bHLH components is associated with precocious and excessive differentiation of multiple endocrine cell types in the developing stomach and gut, showing that Hes-1 operates as a general negative regulator of endodermal endocrine differentiation.

1,160 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
95% related
Stem cell
129.1K papers, 5.9M citations
95% related
Transcription factor
82.8K papers, 5.4M citations
94% related
Regulation of gene expression
85.4K papers, 5.8M citations
94% related
Cell culture
133.3K papers, 5.3M citations
93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023416
2022986
20211,731
20202,011
20192,204