scispace - formally typeset
Search or ask a question
Topic

Cellular differentiation

About: Cellular differentiation is a research topic. Over the lifetime, 90966 publications have been published within this topic receiving 6099252 citations. The topic is also known as: Cellular differentiation & GO:0030154.


Papers
More filters
Journal ArticleDOI
TL;DR: Cell differentiation in the retina of the mouse during the postnatal period was studied by autoradiography to determine when these cells completed their final mitosis prior to differentiating.
Abstract: Cell differentiation in the retina of the mouse during the postnatal period was studied by autoradiography. Animals were injected with 3H-thymidine at ages extending from the day of birth through postnatal day 11. Six weeks later the distribution of labeled nuclei in the cells of the mature neural retina was analyzed to determine when these cells completed their final mitosis prior to differentiating. Central and peripheral zones were analyzed separately. Cell division ceases by 5–6 days in the center of the retina and by 11 days in the periphery. Among cells produced postnatally, 73% differentiate as rods, 20% as bipolar cells, 6% as Muller cells, and 1% as amacrine and ganglion cells. At all stages of embryogenesis, the differentiation of at least three and as many as six distinct types of specialized cells is initiated simultaneously within the ventricular cell population.

1,052 citations

Journal ArticleDOI
TL;DR: Pgp expression in capillaries of the brain and testis may explain the failure of drugs such as vincristine and actinomycin-D to penetrate into tissues, allowing them to remain as pharmacological sanctuaries for malignant cells.
Abstract: We have characterized the normal human tissue distribution and tumor expression of the human multidrug resistance gene (MDR1) product P-glycoprotein (Pgp) by immunohistochemical staining of frozen tissue sections of human normal and tumor tissues, using three mouse monoclonal antibodies (MAb) which recognize at least two different epitopes of Pgp. Pgp expression on normal human tissues was detected in specialized epithelial cells with secretory/excretory functions, trophoblasts in the placenta, and on endothelial cells of capillary blood vessels at blood-tissue barrier sites. There were significant differences in the staining patterns of these MAb. Mouse MAb HYB-241 and HYB-612 each recognize an extracellular epitope of Pgp, whereas mouse MAb C219 detects a carboxy terminal intracellular epitope and has recently been reported to crossreact with the MDR3 gene product. HYB-241 and HYB-612 strongly stain endothelial cells and trophoblasts, whereas C219 is weakly positive or unreactive on these cells. Likewise, C219 strongly stains the biliary pole of hepatocytes, skeletal and heart muscle fibers, whereas HYB-241 and HYB-612 are unreactive on these cells. Immunopathological studies were performed on a wide variety of human tumors. Pgp expression on human tumors was most commonly detected in colon. renal, and adrenal carcinomas; rarely in lung and gastric carcinomas and certain germ cell tumors; and was undetectable in breast and endometrial carcinomas tested. Few sarcomas and none of the melanomas, neuroblastomas, gliomas, and pheochromocytomas had detectable Pgp expression. Intensity and pattern of staining varied among different cases of a given tumor type; although homogeneous immunoreactivity was observed, heterogeneity of expression in a single histological section was more common. The finding of Pgp expression in a variety of normal tissues with diverse physiological functions suggests that the role of Pgp may not be limited to excretion of xenobiotics. Pgp expression in capillaries of the brain and testis may explain the failure of drugs such as vincristine and actinomycin-D to penetrate into these tissues, allowing them to remain as pharmacological sanctuaries for malignant cells. Although Pgp expression can now be detected in a variety of human tumors, further studies are needed to establish the possible significance of this finding.

1,052 citations

Journal ArticleDOI
TL;DR: Unexpectedly, the distribution of Bmi1-expressing stem cells along the length of the small intestine suggested that mammals use more than one molecularly distinguishable adult stem cell subpopulation to maintain organ homeostasis.
Abstract: Eugenio Sangiorgi and Mario Capecchi use lineage tracing in mice to identify Bmi1 as a specific marker of a stem cell population located at the +4 position of the small intestinal crypt. Their findings address a long-standing debate in the field and support the existence of two distinct intestinal stem cell populations near the crypt base. Bmi1 plays an essential part in the self-renewal of hematopoietic and neural stem cells. To investigate its role in other adult stem cell populations, we generated a mouse expressing a tamoxifen-inducible Cre from the Bmi1 locus. We found that Bmi1 is expressed in discrete cells located near the bottom of crypts in the small intestine, predominantly four cells above the base of the crypt (+4 position). Over time, these cells proliferate, expand, self-renew and give rise to all the differentiated cell lineages of the small intestine epithelium. The induction of a stable form of β-catenin in these cells was sufficient to rapidly generate adenomas. Moreover, ablation of Bmi1+ cells using a Rosa26 conditional allele, expressing diphtheria toxin, led to crypt loss. These experiments identify Bmi1 as an intestinal stem cell marker in vivo. Unexpectedly, the distribution of Bmi1-expressing stem cells along the length of the small intestine suggested that mammals use more than one molecularly distinguishable adult stem cell subpopulation to maintain organ homeostasis.

1,051 citations

Journal ArticleDOI
TL;DR: It is shown that human iPSCs use the same transcriptional network to generate neuroepithelia and functionally appropriate neuronal types over the same developmental time course as hESCs in response to the same set of morphogens; however, they do it with significantly reduced efficiency and increased variability.
Abstract: For the promise of human induced pluripotent stem cells (iPSCs) to be realized, it is necessary to ask if and how efficiently they may be differentiated to functional cells of various lineages. Here, we have directly compared the neural-differentiation capacity of human iPSCs and embryonic stem cells (ESCs). We have shown that human iPSCs use the same transcriptional network to generate neuroepithelia and functionally appropriate neuronal types over the same developmental time course as hESCs in response to the same set of morphogens; however, they do it with significantly reduced efficiency and increased variability. These results were consistent across iPSC lines and independent of the set of reprogramming transgenesusedtoderiveiPSCsaswellasthepresenceorabsenceof reprogramming transgenes in iPSCs. These findings, which show a need for improving differentiation potency of iPSCs, suggest the possibility of employing human iPSCs in pathological studies, therapeutic screening, and autologous cell transplantation.

1,050 citations

Journal ArticleDOI
15 Dec 2006-Cell
TL;DR: These studies document a developmental paradigm for cardiogenesis, where muscle and endothelial lineage diversification arises from a single cell-level decision of a multipotent isl1(+) cardiovascular progenitor cell (MICP).

1,050 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
95% related
Stem cell
129.1K papers, 5.9M citations
95% related
Transcription factor
82.8K papers, 5.4M citations
94% related
Regulation of gene expression
85.4K papers, 5.8M citations
94% related
Cell culture
133.3K papers, 5.3M citations
93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023416
2022986
20211,731
20202,011
20192,204