scispace - formally typeset
Search or ask a question

Showing papers on "Cellular network published in 2016"


Journal ArticleDOI
TL;DR: This survey makes an exhaustive review of wireless evolution toward 5G networks, including the new architectural changes associated with the radio access network (RAN) design, including air interfaces, smart antennas, cloud and heterogeneous RAN, and underlying novel mm-wave physical layer technologies.
Abstract: The vision of next generation 5G wireless communications lies in providing very high data rates (typically of Gbps order), extremely low latency, manifold increase in base station capacity, and significant improvement in users’ perceived quality of service (QoS), compared to current 4G LTE networks. Ever increasing proliferation of smart devices, introduction of new emerging multimedia applications, together with an exponential rise in wireless data (multimedia) demand and usage is already creating a significant burden on existing cellular networks. 5G wireless systems, with improved data rates, capacity, latency, and QoS are expected to be the panacea of most of the current cellular networks’ problems. In this survey, we make an exhaustive review of wireless evolution toward 5G networks. We first discuss the new architectural changes associated with the radio access network (RAN) design, including air interfaces, smart antennas, cloud and heterogeneous RAN. Subsequently, we make an in-depth survey of underlying novel mm-wave physical layer technologies, encompassing new channel model estimation, directional antenna design, beamforming algorithms, and massive MIMO technologies. Next, the details of MAC layer protocols and multiplexing schemes needed to efficiently support this new physical layer are discussed. We also look into the killer applications, considered as the major driving force behind 5G. In order to understand the improved user experience, we provide highlights of new QoS, QoE, and SON features associated with the 5G evolution. For alleviating the increased network energy consumption and operating expenditure, we make a detail review on energy awareness and cost efficiency. As understanding the current status of 5G implementation is important for its eventual commercialization, we also discuss relevant field trials, drive tests, and simulation experiments. Finally, we point out major existing research issues and identify possible future research directions.

2,624 citations


Journal ArticleDOI
TL;DR: In this article, the backhaul network capacity and energy efficiency of ultra-dense cellular networks are investigated to answer how much densification can be deployed for 5G ultra-density cellular networks.
Abstract: Traditional ultra-dense wireless networks are recommended as a complement for cellular networks and are deployed in partial areas, such as hotspot and indoor scenarios. Based on the massive multiple-input multi-output antennas and the millimeter wave communication technologies, the 5G ultra-dense cellular network is proposed to deploy in overall cellular scenarios. Moreover, a distribution network architecture is presented for 5G ultra-dense cellular networks. Furthermore, the backhaul network capacity and the backhaul energy efficiency of ultra-dense cellular networks are investigated to answer an important question, that is, how much densification can be deployed for 5G ultra-dense cellular networks. Simulation results reveal that there exist densification limits for 5G ultra-dense cellular networks with backhaul network capacity and backhaul energy efficiency constraints.

845 citations


Proceedings ArticleDOI
22 May 2016
TL;DR: In this article, a 3D placement of UAVs to assist the cellular network via low-altitude UAV-BSs equipped with base stations is proposed. But, the authors highlight the properties of the drone-cell placement problem, and formulate it as a 3-D placement problem with the objective of maximizing the revenue of the network.
Abstract: Agility and resilience requirements of future cellular networks may not be fully satisfied by terrestrial base stations in cases of unexpected or temporary events. A promising solution is assisting the cellular network via low-altitude unmanned aerial vehicles equipped with base stations, i.e., drone-cells. Although drone-cells provide a quick deployment opportunity as aerial base stations, efficient placement becomes one of the key issues. In addition to mobility of the drone-cells in the vertical dimension as well as the horizontal dimension, the differences between the air-to-ground and terrestrial channels cause the placement of the drone-cells to diverge from placement of terrestrial base stations. In this paper, we first highlight the properties of the drone-cell placement problem, and formulate it as a 3-D placement problem with the objective of maximizing the revenue of the network. After some mathematical manipulations, we formulate an equivalent quadratically-constrained mixed integer non-linear optimization problem and propose a computationally efficient numerical solution for this problem. We verify our analytical derivations with numerical simulations and enrich them with discussions which could serve as guidelines for researchers, mobile network operators, and policy makers.

825 citations


Posted Content
TL;DR: In this paper, the authors studied resource allocation for a multiuser MEC system based on time-division multiple access (TDMA) and orthogonal frequency-division Multiple Access (OFDMA) for minimizing the weighted sum mobile energy consumption under the constraint on computation latency.
Abstract: Mobile-edge computation offloading (MECO) offloads intensive mobile computation to clouds located at the edges of cellular networks. Thereby, MECO is envisioned as a promising technique for prolonging the battery lives and enhancing the computation capacities of mobiles. In this paper, we study resource allocation for a multiuser MECO system based on time-division multiple access (TDMA) and orthogonal frequency-division multiple access (OFDMA). First, for the TDMA MECO system with infinite or finite computation capacity, the optimal resource allocation is formulated as a convex optimization problem for minimizing the weighted sum mobile energy consumption under the constraint on computation latency. The optimal policy is proved to have a threshold-based structure with respect to a derived offloading priority function, which yields priorities for users according to their channel gains and local computing energy consumption. As a result, users with priorities above and below a given threshold perform complete and minimum offloading, respectively. Moreover, for the cloud with finite capacity, a sub-optimal resource-allocation algorithm is proposed to reduce the computation complexity for computing the threshold. Next, we consider the OFDMA MECO system, for which the optimal resource allocation is formulated as a non-convex mixed-integer problem. To solve this challenging problem and characterize its policy structure, a sub-optimal low-complexity algorithm is proposed by transforming the OFDMA problem to its TDMA counterpart. The corresponding resource allocation is derived by defining an average offloading priority function and shown to have close-to-optimal performance by simulation.

688 citations


Journal ArticleDOI
TL;DR: A survey of potential DSRC and cellular interworking solutions for efficient V2X communications, together with the main interworking challenges resulting from vehicle mobility, such as vertical handover and network selection issues.
Abstract: Vehicle-to-anything (V2X) communications refer to information exchange between a vehicle and various elements of the intelligent transportation system (ITS), including other vehicles, pedestrians, Internet gateways, and transport infrastructure (such as traffic lights and signs). The technology has a great potential of enabling a variety of novel applications for road safety, passenger infotainment, car manufacturer services, and vehicle traffic optimization. Today, V2X communications is based on one of two main technologies: dedicated short-range communications (DSRC) and cellular networks. However, in the near future, it is not expected that a single technology can support such a variety of expected V2X applications for a large number of vehicles. Hence, interworking between DSRC and cellular network technologies for efficient V2X communications is proposed. This paper surveys potential DSRC and cellular interworking solutions for efficient V2X communications. First, we highlight the limitations of each technology in supporting V2X applications. Then, we review potential DSRC-cellular hybrid architectures, together with the main interworking challenges resulting from vehicle mobility, such as vertical handover and network selection issues. In addition, we provide an overview of the global DSRC standards, the existing V2X research and development platforms, and the V2X products already adopted and deployed in vehicles by car manufactures, as an attempt to align academic research with automotive industrial activities. Finally, we suggest some open research issues for future V2X communications based on the interworking of DSRC and cellular network technologies.

583 citations


Journal ArticleDOI
TL;DR: The concept of the 5G Network Slice Broker in 5G systems is introduced, which enables mobile virtual network operators, over-the-top providers, and industry vertical market players to request and lease resources from infrastructure providers dynamically via signaling means.
Abstract: The ever-increasing traffic demand is pushing network operators to find new cost-efficient solutions toward the deployment of future 5G mobile networks. The network sharing paradigm was explored in the past and partially deployed. Nowadays, advanced mobile network multi-tenancy approaches are increasingly gaining momentum, paving the way toward further decreasing capital expenditure and operational expenditure (CAPEX/OPEX) costs, while enabling new business opportunities. This article provides an overview of the 3GPP standard evolution from network sharing principles, mechanisms, and architectures to future on-demand multi-tenant systems. In particular, it introduces the concept of the 5G Network Slice Broker in 5G systems, which enables mobile virtual network operators, over-the-top providers, and industry vertical market players to request and lease resources from infrastructure providers dynamically via signaling means. Finally, it reviews the latest standardization efforts, considering remaining open issues for enabling advanced network slicing solutions, taking into account the allocation of virtualized network functions based on ETSI NFV, the introduction of shared network functions, and flexible service chaining.

467 citations


Journal ArticleDOI
TL;DR: A close relationship is identified between UAV positioning and directional mmWave user discovery, where update of the former may directly impact the latter and vice versa and different ways of dealing with signal blockage are explored.
Abstract: To support high data rate urgent or ad hoc communications, we consider mmWave UAV cellular networks and the associated challenges and solutions. To enable fast beamforming training and tracking, we first investigate a hierarchical structure of beamforming codebooks and design of hierarchical codebooks with different beam widths via sub-array techniques. We next examine the Doppler effect as a result of UAV movement and find that the Doppler effect may not be catastrophic when high gain directional transmission is used. We further explore the use of mmWave spatial-division multiple access and demonstrate its clear advantage in improving the cellular network capacity. We also explore different ways of dealing with signal blockage and point out that possible adaptive UAV cruising algorithms would be necessary to counteract signal blockage. Finally, we identify a close relationship between UAV positioning and directional mmWave user discovery, where update of the former may directly impact the latter and vice versa.

413 citations


Proceedings ArticleDOI
01 Sep 2016
TL;DR: This paper proposes a method to find the positions of drone-BSs in an area with different user densities using a heuristic algorithm and shows that the proposed approach can satisfy the quality-of-service requirements of the network.
Abstract: Using drone base stations (drone-BSs) in wireless networks has started attracting attention. Drone-BSs can assist the ground BSs in both capacity and coverage enhancement. One of the important problems about integrating drone-BSs to cellular networks is the management of their placement to satisfy the dynamic system requirements. In this paper, we propose a method to find the positions of drone-BSs in an area with different user densities using a heuristic algorithm. The goal is to find the minimum number of drone-BSs and their 3D placement so that all the users are served. Our simulation results show that the proposed approach can satisfy the quality-of-service requirements of the network.

401 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigate and discuss serious limitations of the fourth generation (4G) cellular networks and corresponding new features of 5G networks, and present a comparative study of the proposed architectures that can be categorized on the basis of energy-efficiency, network hierarchy, and network types.

363 citations


Journal ArticleDOI
TL;DR: This letter investigates the problem of user-demand-based UAV assignment over geographical areas subject to high traffic demands and proposes a neural-based cost function approach, in which UAVs are matched to a particular geographical area.
Abstract: Modern day wireless networks have tremendously evolved driven by a sharp increase in user demands, continuously requesting more data and services. This puts significant strain on infrastructure-based macro cellular networks due to the inefficiency in handling these traffic demands, cost effectively. A viable solution is the use of unmanned aerial vehicles (UAVs) as intermediate aerial nodes between the macro and small cell tiers for improving coverage and boosting capacity. This letter investigates the problem of user-demand-based UAV assignment over geographical areas subject to high traffic demands. A neural-based cost function approach is formulated, in which UAVs are matched to a particular geographical area. It is shown that leveraging multiple UAVs not only provides long-range connectivity but also better load balancing and traffic offload. Simulation study demonstrates that the proposed approach yields significant improvements in terms of fifth percentile spectral efficiency up to 38% and reduced delays up to 37.5% compared with a ground-based network baseline without UAVs.

319 citations


Journal ArticleDOI
TL;DR: It is shown that the best strategy depends on the target SNR regime, and guidelines to characterize the optimal choice as a function of the system parameters are provided.
Abstract: The massive amounts of bandwidth available at millimeter-wave frequencies (above 10 GHz) have the potential to greatly increase the capacity of fifth generation cellular wireless systems. However, to overcome the high isotropic propagation loss experienced at these frequencies, highly directional antennas will be required at both the base station and the mobile terminal to achieve sufficient link budget in wide area networks. This reliance on directionality has important implications for control layer procedures. In particular, initial access can be significantly delayed due to the need for the base station and the user to find the proper alignment for directional transmission and reception. This article provides a survey of several recently proposed techniques for this purpose. A coverage and delay analysis is performed to compare various techniques including exhaustive and iterative search, and context-information-based algorithms. We show that the best strategy depends on the target SNR regime, and provide guidelines to characterize the optimal choice as a function of the system parameters.

Journal ArticleDOI
TL;DR: In this paper, the authors proposed and analyzed cache-based content delivery in a three-tier heterogeneous network (HetNet), where base stations (BSs), relays, and device-to-device (D2D) pairs are included.
Abstract: Caching popular multimedia content is a promising way to unleash the ultimate potential of wireless networks. In this paper, we propose and analyze cache-based content delivery in a three-tier heterogeneous network (HetNet), where base stations (BSs), relays, and device-to-device (D2D) pairs are included. We advocate proactively caching popular content in the relays and parts of the users with caching ability when the network is off-peak. The cached content can be reused for frequent access to offload the cellular network traffic. The node locations are first modeled as mutually independent Poisson point processes (PPPs) and the corresponding content access protocol is developed. The average ergodic rate and outage probability in the downlink are then analyzed theoretically. We further derive the throughput and the delay based on the multiclass processor-sharing queue model and the continuous-time Markov process. According to the critical condition of the steady state in the HetNet, the maximum traffic load and the global throughput gain are investigated. Moreover, impacts of some key network characteristics, e.g., the heterogeneity of multimedia contents, node densities, and the limited caching capacities, on the system performance are elaborated on to provide valuable insight.

Journal ArticleDOI
TL;DR: The evolution toward a "network of functions," network slicing, and software-defined mobile network control, management, and orchestration is discussed, and the roadmap for the future evolution of 3GPP EPS and its technology components is detailed and relevant standards defining organizations are listed.
Abstract: As a chain is as strong as its weakest element, so are the efficiency, flexibility, and robustness of a mobile network, which relies on a range of different functional elements and mechanisms. Indeed, the mobile network architecture needs particular attention when discussing the evolution of 3GPP EPS because it is the architecture that integrates the many different future technologies into one mobile network. This article discusses 3GPP EPS mobile network evolution as a whole, analyzing specific architecture properties that are critical in future 3GPP EPS releases. In particular, this article discusses the evolution toward a "network of functions," network slicing, and software-defined mobile network control, management, and orchestration. Furthermore, the roadmap for the future evolution of 3GPP EPS and its technology components is detailed and relevant standards defining organizations are listed.

Journal ArticleDOI
TL;DR: This paper proposes to employ a multi-antenna base station (BS) as a source of green interference to enhance secure transmission in the satellite network and presents two beamforming schemes, namely, hybrid zero- forcing and partial zero-forcing to solve the optimization problem and obtain the BF weight vectors in a closed form.
Abstract: This paper investigates the physical layer security of a satellite network, whose downlink spectral resource is shared with a terrestrial cellular network. We propose to employ a multi-antenna base station (BS) as a source of green interference to enhance secure transmission in the satellite network. By taking the mutual interference between these two networks into account, we first formulate a constrained optimization problem to maximize the instantaneous rate of the terrestrial user while satisfying the interference probability constraint of the satellite user. Then, with the assumption that imperfect channel state information (CSI) and statistical CSI of the link between the BS and satellite user are available at the BS, we present two beamforming (BF) schemes, namely, hybrid zero-forcing and partial zero-forcing to solve the optimization problem and obtain the BF weight vectors in a closed form. Moreover, we analyze the secrecy performance of primary satellite network by considering two practical scenarios, namely: Scenario I, the eavesdroppers CSI is unknown at the satellite and Scenario II, the eavesdroppers CSI is known at the satellite. Specifically, we derive the analytical expressions for the secrecy outage probability for Scenario I and the average secrecy rate for Scenario II. Finally, numerical results are provided to confirm the superiority of the proposed BF schemes and the validity of the performance analysis, as well as demonstrate the impacts of various parameters on the secrecy performance of the satellite network.

Journal ArticleDOI
TL;DR: An extensive survey on device-to-device (D2D) communication has been presented, including the plus points it offers; the key open issues associated with it like peer discovery, resource allocation etc, demanding special attention of the research community; some of its integrant technologies like millimeter wave D2D (mmWave), ultra dense networks (UDNs), cognitive D2d, handover procedure in D2 D and its numerous use cases.

Journal ArticleDOI
TL;DR: It is shown that the multicast-aware caching problem is NP-hard and solutions with performance guarantees using randomized-rounding techniques are developed, showing that in the presence of massive demand for delay tolerant content, combining caching and multicast can indeed reduce energy costs.
Abstract: The landscape toward 5G wireless communication is currently unclear, and, despite the efforts of academia and industry in evolving traditional cellular networks, the enabling technology for 5G is still obscure. This paper puts forward a network paradigm toward next-generation cellular networks, targeting to satisfy the explosive demand for mobile data while minimizing energy expenditures. The paradigm builds on two principles; namely caching and multicast . On one hand, caching policies disperse popular content files at the wireless edge, e.g., pico-cells and femto-cells, hence shortening the distance between content and requester. On other hand, due to the broadcast nature of wireless medium, requests for identical files occurring at nearby times are aggregated and served through a common multicast stream. To better exploit the available cache space, caching policies are optimized based on multicast transmissions. We show that the multicast-aware caching problem is NP-hard and develop solutions with performance guarantees using randomized-rounding techniques. Trace-driven numerical results show that in the presence of massive demand for delay tolerant content, combining caching and multicast can indeed reduce energy costs. The gains over existing caching schemes are 19% when users tolerate delay of three minutes, increasing further with the steepness of content access pattern.

Journal ArticleDOI
TL;DR: In this article, an access threshold-based secrecy mobile association policy was proposed to associate each user with the BS providing the maximum truncated average received signal power beyond a threshold, and the connection probability and secrecy probability of a randomly located user were investigated.
Abstract: The heterogeneous cellular network (HCN) is a promising approach to the deployment of 5G cellular networks. This paper comprehensively studies physical layer security in a multitier HCN where base stations (BSs), authorized users, and eavesdroppers are all randomly located. We first propose an access threshold-based secrecy mobile association policy that associates each user with the BS providing the maximum truncated average received signal power beyond a threshold. Under the proposed policy, we investigate the connection probability and secrecy probability of a randomly located user and provide tractable expressions for the two metrics. Asymptotic analysis reveals that setting a larger access threshold increases the connection probability while decreases the secrecy probability. We further evaluate the network-wide secrecy throughput and the minimum secrecy throughput per user with both connection and secrecy probability constraints. We show that introducing a properly chosen access threshold significantly enhances the secrecy throughput performance of a HCN.

Journal ArticleDOI
TL;DR: In this article, a tractable uplink energy efficiency (EE) maximization problem was formulated and solved with respect to the density of base stations (BSs), the transmit power levels, the number of BS antennas and users per cell, and the pilot reuse factor.
Abstract: What would a cellular network designed for maximal energy efficiency look like? To answer this fundamental question, tools from stochastic geometry are used in this paper to model future cellular networks and obtain a new lower bound on the average uplink spectral efficiency. This enables us to formulate a tractable uplink energy efficiency (EE) maximization problem and solve it analytically with respect to the density of base stations (BSs), the transmit power levels, the number of BS antennas and users per cell, and the pilot reuse factor. The closed-form expressions obtained from this general EE maximization framework provide valuable insights on the interplay between the optimization variables, hardware characteristics, and propagation environment. Small cells are proved to give high EE, but the EE improvement saturates quickly with the BS density. Interestingly, the maximal EE is achieved by also equipping the BSs with multiple antennas and operate in a “massive MIMO” fashion, where the array gain from coherent detection mitigates interference and the multiplexing of many users reduces the energy cost per user.

Journal ArticleDOI
TL;DR: A general analytical model is developed to characterize and derive the uplink and downlink cell association in the view of the signal-to-interference-and-noise-ratio and rate coverage probabilities in a mixed deployment of traditional sub-6 GHz macrocells and mmWave small cells.
Abstract: Millimeter wave (mmWave) links will offer high capacity but are poor at penetrating into or diffracting around solid objects. Thus, we consider a hybrid cellular network with traditional sub-6 GHz macrocells coexisting with denser mmWave small cells, where a mobile user can connect to either opportunistically. We develop a general analytical model to characterize and derive the uplink and downlink cell association in the view of the signal-to-interference-and-noise-ratio and rate coverage probabilities in such a mixed deployment. We offer extensive validation of these analytical results (which rely on several simplifying assumptions) with simulation results. Using the analytical results, different decoupled uplink and downlink cell association strategies are investigated and their superiority is shown compared with the traditional coupled approach. Finally, small cell biasing in mmWave is studied, and we show that unprecedented biasing values are desirable due to the wide bandwidth.

Journal ArticleDOI
TL;DR: It is shown that increasing the number of channels may result in an increase of outage probability in the D2D-enabled cellular network, and a unified framework is provided to analyze the downlink outage probabilities in a multichannel environment with Rayleigh fading.
Abstract: In this paper, we study the outage probability of device-to-device (D2D)-communication-enabled cellular networks from a general threshold-based perspective. Specifically, a mobile user equipment (UE) transmits in D2D mode if the received signal strength (RSS) from the nearest base station (BS) is less than a specified threshold $\beta \ge 0$ ; otherwise, it connects to the nearest BS and transmits in cellular mode. The RSS-threshold-based setting is general in the sense that by varying $\beta$ from $\beta = 0$ to $\beta = \infty$ , the network accordingly evolves from a traditional cellular network (including only cellular mode) toward a wireless ad hoc network (including only D2D mode). We provide a unified framework to analyze the downlink outage probability in a multichannel environment with Rayleigh fading, where the spatial distributions of BSs and UEs are well explicitly accounted for by utilizing stochastic geometry. We derive closed-form expressions for the outage probability of a generic UE and that in both cellular mode and D2D mode and quantify the performance gains in outage probability that can be obtained by allowing such RSS-threshold-based D2D communications. We show that increasing the number of channels, although able to support more cellular UEs, may result in an increase of outage probability in the D2D-enabled cellular network. The corresponding condition and reason are also identified by applying our framework.

Journal ArticleDOI
TL;DR: It is shown that the distributed scheme is effective for the resource allocation and could protect the CUs with limited signaling overhead and the signaling overhead is compared between the centralized and decentralized schemes.
Abstract: This paper addresses the joint spectrum sharing and power allocation problem for device-to-device (D2D) communications underlaying a cellular network (CN). In the context of orthogonal frequency-division multiple-access systems, with the uplink resources shared with D2D links, both centralized and decentralized methods are proposed. Assuming global channel state information (CSI), the resource allocation problem is first formulated as a nonconvex optimization problem, which is solved using convex approximation techniques. We prove that the approximation method converges to a suboptimal solution and is often very close to the global optimal solution. On the other hand, by exploiting the decentralized network structure with only local CSI at each node, the Stackelberg game model is then adopted to devise a distributed resource allocation scheme. In this game-theoretic model, the base station (BS), which is modeled as the leader, coordinates the interference from the D2D transmission to the cellular users (CUs) by pricing the interference. Subsequently, the D2D pairs, as followers, compete for the spectrum in a noncooperative fashion. Sufficient conditions for the existence of the Nash equilibrium (NE) and the uniqueness of the solution are presented, and an iterative algorithm is proposed to solve the problem. In addition, the signaling overhead is compared between the centralized and decentralized schemes. Finally, numerical results are presented to verify the proposed schemes. It is shown that the distributed scheme is effective for the resource allocation and could protect the CUs with limited signaling overhead.

Journal ArticleDOI
TL;DR: This paper designs, implements, and evaluates a time series analysis approach that is able to decompose large scale mobile traffic into regularity and randomness components, and reveals that high predictability of the regularity component can be achieved, and demonstrates that the prediction of randomness component of mobile traffic data is impossible.
Abstract: Understanding and forecasting mobile traffic of large scale cellular networks is extremely valuable for service providers to control and manage the explosive mobile data, such as network planning, load balancing, and data pricing mechanisms. This paper targets at extracting and modeling traffic patterns of 9,000 cellular towers deployed in a metropolitan city. To achieve this goal, we design, implement, and evaluate a time series analysis approach that is able to decompose large scale mobile traffic into regularity and randomness components. Then, we use time series prediction to forecast the traffic patterns based on the regularity components. Our study verifies the effectiveness of our utilized time series decomposition method, and shows the geographical distribution of the regularity and randomness component. Moreover, we reveal that high predictability of the regularity component can be achieved, and demonstrate that the prediction of randomness component of mobile traffic data is impossible.

Journal ArticleDOI
TL;DR: In this article, the authors identify and explain five key arguments in favor of downlink/uplink decoupling based on a blend of theoretical, experimental, and architectural insights.
Abstract: Ever since the inception of mobile telephony, the downlink and uplink of cellular networks have been coupled, that is, mobile terminals have been constrained to associate with the same base station in both the downlink and uplink directions. New trends in network densification and mobile data usage increase the drawbacks of this constraint, and suggest that it should be revisited. In this article we identify and explain five key arguments in favor of downlink/uplink decoupling based on a blend of theoretical, experimental, and architectural insights. We then overview the changes needed in current LTE-A mobile systems to enable this decoupling, and then look ahead to fifth generation cellular standards. We demonstrate that decoupling can lead to significant gains in network throughput, outage, and power consumption at a much lower cost compared to other solutions that provide comparable or lower gains.

Journal ArticleDOI
TL;DR: The CPRI specification, its concept, design, and interfaces are presented, a use case for fronthaul dimensioning in a realistic LTE scenario is provided, and some interesting open research challenges in the next-generation 5G mobile network are proposed.
Abstract: The CPRI specification has been introduced to enable the communication between radio equipment and radio equipment controllers, and is of particular interest for mobile operators willing to deploy their networks following the novel cloud radio access network approach. In such a case, CPRI provides an interface for the interconnection of remote radio heads with a baseband unit by means of the so-called fronthaul network. This article presents the CPRI specification, its concept, design, and interfaces, provides a use case for fronthaul dimensioning in a realistic LTE scenario, and proposes some interesting open research challenges in the next-generation 5G mobile network.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the secrecy performance of mmWave cellular networks under a stochastic geometry framework and derived the average number of perfect communication links per unit area in both noncolluding and colluding eavesdroppers scenarios.
Abstract: Recent studies show that millimeter wave (mmWave) communications can offer orders of magnitude, which increases in the cellular capacity. However, the secrecy performance of an mmWave cellular network has not been investigated so far. Leveraging the new path-loss and blockage models for mmWave channels, which are significantly different from the conventional microwave channel, this paper comprehensively studies the network-wide physical layer security performance of the downlink transmission in an mmWave cellular network under a stochastic geometry framework. We first study the secure connectivity probability and the average number of perfect communication links per unit area in a noise-limited mmWave network for both non-colluding and colluding eavesdroppers scenarios, respectively. Then, we evaluate the effect of the artificial noise (AN) on the secrecy performance, and derive the analysis result of average number of perfect communication links per unit area in an interference-limited mmWave network. Numerical results demonstrate the network-wide secrecy performance, and provide interesting insights into how the secrecy performance is influenced by various network parameters: antenna array pattern, base station intensity, and AN power allocation.

Journal ArticleDOI
TL;DR: Simulation results on NPRACH performance including detection rate, false alarm rate, and time-of-arrival estimation accuracy are presented to shed light on the overall potential of NB-IoT systems.
Abstract: Narrowband Internet of Things (NB-IoT) is an emerging cellular technology that will provide improved coverage for massive number of low-throughput low-cost devices with low device power consumption in delay-tolerant applications. A new single tone signal with frequency hopping has been designed for NB-IoT physical random access channel (NPRACH). In this letter, we describe this new NPRACH design and explain in detail the design rationale. We further propose possible receiver algorithms for NPRACH detection and time-of-arrival estimation. Simulation results on NPRACH performance including detection rate, false alarm rate, and time-of-arrival estimation accuracy are presented to shed light on the overall potential of NB-IoT systems.

Journal ArticleDOI
TL;DR: A suitable radio numerology to support the typical characteristics, that is, massive connection density and small and bursty packet transmissions with the constraint of low-cost and low complexity operation of IoT devices is designed.
Abstract: The parameters of physical layer radio frame for 5th generation (5G) mobile cellular systems are expected to be flexibly configured to cope with diverse requirements of different scenarios and services. This paper presents a frame structure and design, which is specifically targeting Internet of Things (IoT) provision in 5G wireless communication systems. We design a suitable radio numerology to support the typical characteristics, that is, massive connection density and small and bursty packet transmissions with the constraint of low-cost and low complexity operation of IoT devices. We also elaborate on the design of parameters for random access channel enabling massive connection requests by IoT devices to support the required connection density. The proposed design is validated by link level simulation results to show that the proposed numerology can cope with transceiver imperfections and channel impairments. Furthermore, the results are also presented to show the impact of different values of guard band on system performance using different subcarrier spacing sizes for data and random access channels, which show the effectiveness of the selected waveform and guard bandwidth. Finally, we present system-level simulation results that validate the proposed design under realistic cell deployments and inter-cell interference conditions.

Journal ArticleDOI
TL;DR: In this paper, a hierarchical combinatorial auction mechanism is proposed to solve the resource allocation problem in 5G cellular networks, which satisfies the requirements of efficient resource allocation, strict inter-slice isolation and the ability of intra-slice customization.
Abstract: Virtualization has been seen as one of the main evolution trends in the forthcoming fifth generation (5G) cellular networks which enables the decoupling of infrastructure from the services it provides. In this case, the roles of infrastructure providers (InPs) and mobile virtual network operators (MVNOs) can be logically separated and the resources (e.g., subchannels, power, and antennas) of a base station owned by an InP can be transparently shared by multiple MVNOs, while each MVNO virtually owns the entire BS. Naturally, the issue of resource allocation arises. In particular, the InP is required to abstract the physical resources into isolated slices for each MVNO who then allocates the resources within the slice to its subscribed users. In this paper, we aim to address this two-level hierarchical resource allocation problem while satisfying the requirements of efficient resource allocation, strict inter-slice isolation, and the ability of intra-slice customization. To this end, we design a hierarchical combinatorial auction mechanism, based on which a truthful and sub-efficient resource allocation framework is provided. Specifically, winner determination problems (WDPs) are formulated for the InP and MVNOs, and computationally tractable algorithms are proposed to solve these WDPs. Also, pricing schemes are designed to ensure incentive compatibility. The designed mechanism can achieve social efficiency in each level even if each party involved acts selfishly. Numerical results show the effectiveness of the proposed scheme.

Journal ArticleDOI
TL;DR: The average energy efficiency and spectral efficiency of multihop D2D communications under Rayleigh fading channels are analyzed and close analytical approximations based on Taylor series expansion are provided.
Abstract: Device-to-device (D2D) communications are usually considered to be two user equipment units (UEs) communicating directly without going through the central base station (BS). In fact, they can be further broadened to multihop D2D communications in which a UE may help other UEs communicate with each other or assist other UEs to communicate with the BS. In this paper, the authors investigate a scenario of multihop D2D communications where one UE may help other two UEs to exchange information with a two-time-slot physical-layer network coding scheme. The authors analyze the average energy efficiency and spectral efficiency of multihop D2D communications under Rayleigh fading channels and get close analytical approximations based on Taylor series expansion. Comparisons with direct D2D communications and traditional cellular communications through BS are provided. The optimal UE transmission powers of these three different modes to maximize the energy efficiency are also derived.

Proceedings Article
18 May 2016
TL;DR: This paper proposes a novel heuristicbased admission control mechanism able to dynamically allocate network resources to different slices in order to maximize the satisfaction of the users while guaranteeing to meet the requirements of the slices they belong to.
Abstract: 5G mobile network is expected to serve flexible requirements hence dynamically allocate network resources according to the demands. Network slicing, where network resources are packaged and assigned in an isolated manner to set of users according to their specific requirements, is considered as a key paradigm to fulfil diversity of requirements. There will clearly be conflicting demands in allocation of such slices, and the effective provisioning of network slicing poses several challenges. Indeed, network slicing has a twofold impact in terms of user/traffic prioritization as it dictates for the simultaneous management of the priority among different slices (i.e., interslice) and the priority among the users belonging to the same slice (i.e., intra-slice). In this paper, we propose a novel heuristicbased admission control mechanism able to dynamically allocate network resources to different slices in order to maximize the satisfaction of the users while guaranteeing to meet the requirements of the slices they belong to. Through simulations, we demonstrate how our proposal provides (i) higher user experience in individual slices, (ii) increased utilization of network resources and (iii) higher scalability when the number of users in each slice increases.