scispace - formally typeset
Topic

Cellulose

About: Cellulose is a(n) research topic. Over the lifetime, 59060 publication(s) have been published within this topic receiving 1419643 citation(s). The topic is also known as: Hydroxycellulose & Pyrocellulose.

...read more

Papers
More filters

Book
01 Jan 1985-
Abstract: Cellular Materials Cellulose Cellulose, Biosynthesis Cellulose, Graft Copolymers Cellulose, Microcrystalline Cellulose Derivatives Cellulose Esters, Inorganic Cellulose Esters, Organic Cellulose Ethers Cement Additives Chain-Reaction Polymerization Chain Transfer Characterization of Polymers Charge-Transfer Complexes Chelate- Forming Polymers Chemical Analysis Chemically Resistant Polymers Chitin Chloroprene Polymers Chlorotrifluorethylene Polymers Chromatography Classification of Polymerization Reactions Coating Methods Coatings Coatings, Electrodeposition Cold Forming.

...read more

7,238 citations


Journal ArticleDOI
Ye Sun1, Jiayang Cheng1Institutions (1)
TL;DR: Simultaneous saccharification and fermentation effectively removes glucose, which is an inhibitor to cellulase activity, thus increasing the yield and rate of cellulose hydrolysis, thereby increasing the cost of ethanol production from lignocellulosic materials.

...read more

Abstract: Lignocellulosic biomass can be utilized to produce ethanol, a promising alternative energy source for the limited crude oil. There are mainly two processes involved in the conversion: hydrolysis of cellulose in the lignocellulosic biomass to produce reducing sugars, and fermentation of the sugars to ethanol. The cost of ethanol production from lignocellulosic materials is relatively high based on current technologies, and the main challenges are the low yield and high cost of the hydrolysis process. Considerable research efforts have been made to improve the hydrolysis of lignocellulosic materials. Pretreatment of lignocellulosic materials to remove lignin and hemicellulose can significantly enhance the hydrolysis of cellulose. Optimization of the cellulase enzymes and the enzyme loading can also improve the hydrolysis. Simultaneous saccharification and fermentation effectively removes glucose, which is an inhibitor to cellulase activity, thus increasing the yield and rate of cellulose hydrolysis.

...read more

5,503 citations


Journal ArticleDOI
30 May 2005-Angewandte Chemie
TL;DR: The current knowledge in the structure and chemistry of cellulose, and in the development of innovative cellulose esters and ethers for coatings, films, membranes, building materials, drilling techniques, pharmaceuticals, and foodstuffs are assembled.

...read more

Abstract: As the most important skeletal component in plants, the polysaccharide cellulose is an almost inexhaustible polymeric raw material with fascinating structure and properties. Formed by the repeated connection of D-glucose building blocks, the highly functionalized, linear stiff-chain homopolymer is characterized by its hydrophilicity, chirality, biodegradability, broad chemical modifying capacity, and its formation of versatile semicrystalline fiber morphologies. In view of the considerable increase in interdisciplinary cellulose research and product development over the past decade worldwide, this paper assembles the current knowledge in the structure and chemistry of cellulose, and in the development of innovative cellulose esters and ethers for coatings, films, membranes, building materials, drilling techniques, pharmaceuticals, and foodstuffs. New frontiers, including environmentally friendly cellulose fiber technologies, bacterial cellulose biomaterials, and in-vitro syntheses of cellulose are highlighted together with future aims, strategies, and perspectives of cellulose research and its applications.

...read more

5,229 citations


Journal ArticleDOI
Haiping Yang1, Rong Yan2, Hanping Chen1, Dong Ho Lee2  +1 moreInstitutions (2)
01 Aug 2007-Fuel
Abstract: The pyrolysis characteristics of three main components (hemicellulose, cellulose and lignin) of biomass were investigated using, respectively, a thermogravimetric analyzer (TGA) with differential scanning calorimetry (DSC) detector and a pack bed. The releasing of main gas products from biomass pyrolysis in TGA was on-line measured using Fourier transform infrared (FTIR) spectroscopy. In thermal analysis, the pyrolysis of hemicellulose and cellulose occurred quickly, with the weight loss of hemicellulose mainly happened at 220–315 °C and that of cellulose at 315–400 °C. However, lignin was more difficult to decompose, as its weight loss happened in a wide temperature range (from 160 to 900 °C) and the generated solid residue was very high (∼40 wt.%). From the viewpoint of energy consumption in the course of pyrolysis, cellulose behaved differently from hemicellulose and lignin; the pyrolysis of the former was endothermic while that of the latter was exothermic. The main gas products from pyrolyzing the three components were similar, including CO 2 , CO, CH 4 and some organics. The releasing behaviors of H 2 and the total gas yield were measured using Micro-GC when pyrolyzing the three components in a packed bed. It was observed that hemicellulose had higher CO 2 yield, cellulose generated higher CO yield, and lignin owned higher H 2 and CH 4 yield. A better understanding to the gas products releasing from biomass pyrolysis could be achieved based on this in-depth investigation on three main biomass components.

...read more

4,760 citations


Journal ArticleDOI
TL;DR: A concluding discussion identifies unresolved issues pertaining to microbial cellulose utilization, suggests approaches by which such issues might be resolved, and contrasts a microbially oriented cellulose hydrolysis paradigm to the more conventional enzymatically oriented paradigm in both fundamental and applied contexts.

...read more

Abstract: Fundamental features of microbial cellulose utilization are examined at successively higher levels of aggregation encompassing the structure and composition of cellulosic biomass, taxonomic diversity, cellulase enzyme systems, molecular biology of cellulase enzymes, physiology of cellulolytic microorganisms, ecological aspects of cellulase-degrading communities, and rate-limiting factors in nature. The methodological basis for studying microbial cellulose utilization is considered relative to quantification of cells and enzymes in the presence of solid substrates as well as apparatus and analysis for cellulose-grown continuous cultures. Quantitative description of cellulose hydrolysis is addressed with respect to adsorption of cellulase enzymes, rates of enzymatic hydrolysis, bioenergetics of microbial cellulose utilization, kinetics of microbial cellulose utilization, and contrasting features compared to soluble substrate kinetics. A biological perspective on processing cellulosic biomass is presented, including features of pretreated substrates and alternative process configurations. Organism development is considered for "consolidated bioprocessing" (CBP), in which the production of cellulolytic enzymes, hydrolysis of biomass, and fermentation of resulting sugars to desired products occur in one step. Two organism development strategies for CBP are examined: (i) improve product yield and tolerance in microorganisms able to utilize cellulose, or (ii) express a heterologous system for cellulose hydrolysis and utilization in microorganisms that exhibit high product yield and tolerance. A concluding discussion identifies unresolved issues pertaining to microbial cellulose utilization, suggests approaches by which such issues might be resolved, and contrasts a microbially oriented cellulose hydrolysis paradigm to the more conventional enzymatically oriented paradigm in both fundamental and applied contexts.

...read more

4,494 citations


Network Information
Related Topics (5)
Lignin

18.3K papers, 659.8K citations

93% related
Hemicellulose

8.5K papers, 296.5K citations

91% related
Depolymerization

4.4K papers, 109.3K citations

90% related
Cellulosic ethanol

3.6K papers, 155.1K citations

89% related
Cellulose fiber

10.4K papers, 190.5K citations

89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202287
20212,543
20202,918
20193,191
20183,122
20173,005

Top Attributes

Show by:

Topic's top 5 most impactful authors

Thomas Heinze

225 papers, 10.5K citations

Lina Zhang

217 papers, 15.4K citations

Akira Isogai

182 papers, 16K citations

Run-Cang Sun

171 papers, 9.5K citations

Arthur J. Ragauskas

128 papers, 7.8K citations