scispace - formally typeset


Central limit theorem

About: Central limit theorem is a(n) research topic. Over the lifetime, 10119 publication(s) have been published within this topic receiving 253995 citation(s). The topic is also known as: CLT.

More filters
Journal ArticleDOI
Abstract: Let $x$ and $y$ be two random variables with continuous cumulative distribution functions $f$ and $g$. A statistic $U$ depending on the relative ranks of the $x$'s and $y$'s is proposed for testing the hypothesis $f = g$. Wilcoxon proposed an equivalent test in the Biometrics Bulletin, December, 1945, but gave only a few points of the distribution of his statistic. Under the hypothesis $f = g$ the probability of obtaining a given $U$ in a sample of $n x's$ and $m y's$ is the solution of a certain recurrence relation involving $n$ and $m$. Using this recurrence relation tables have been computed giving the probability of $U$ for samples up to $n = m = 8$. At this point the distribution is almost normal. From the recurrence relation explicit expressions for the mean, variance, and fourth moment are obtained. The 2rth moment is shown to have a certain form which enabled us to prove that the limit distribution is normal if $m, n$ go to infinity in any arbitrary manner. The test is shown to be consistent with respect to the class of alternatives $f(x) > g(x)$ for every $x$.

9,469 citations

14 Mar 1996
Abstract: 1.1. Introduction.- 1.2. Outer Integrals and Measurable Majorants.- 1.3. Weak Convergence.- 1.4. Product Spaces.- 1.5. Spaces of Bounded Functions.- 1.6. Spaces of Locally Bounded Functions.- 1.7. The Ball Sigma-Field and Measurability of Suprema.- 1.8. Hilbert Spaces.- 1.9. Convergence: Almost Surely and in Probability.- 1.10. Convergence: Weak, Almost Uniform, and in Probability.- 1.11. Refinements.- 1.12. Uniformity and Metrization.- 2.1. Introduction.- 2.2. Maximal Inequalities and Covering Numbers.- 2.3. Symmetrization and Measurability.- 2.4. Glivenko-Cantelli Theorems.- 2.5. Donsker Theorems.- 2.6. Uniform Entropy Numbers.- 2.7. Bracketing Numbers.- 2.8. Uniformity in the Underlying Distribution.- 2.9. Multiplier Central Limit Theorems.- 2.10. Permanence of the Donsker Property.- 2.11. The Central Limit Theorem for Processes.- 2.12. Partial-Sum Processes.- 2.13. Other Donsker Classes.- 2.14. Tail Bounds.- 3.1. Introduction.- 3.2. M-Estimators.- 3.3. Z-Estimators.- 3.4. Rates of Convergence.- 3.5. Random Sample Size, Poissonization and Kac Processes.- 3.6. The Bootstrap.- 3.7. The Two-Sample Problem.- 3.8. Independence Empirical Processes.- 3.9. The Delta-Method.- 3.10. Contiguity.- 3.11. Convolution and Minimax Theorems.- A. Appendix.- A.1. Inequalities.- A.2. Gaussian Processes.- A.2.1. Inequalities and Gaussian Comparison.- A.2.2. Exponential Bounds.- A.2.3. Majorizing Measures.- A.2.4. Further Results.- A.3. Rademacher Processes.- A.4. Isoperimetric Inequalities for Product Measures.- A.5. Some Limit Theorems.- A.6. More Inequalities.- A.6.1. Binomial Random Variables.- A.6.2. Multinomial Random Vectors.- A.6.3. Rademacher Sums.- Notes.- References.- Author Index.- List of Symbols.

5,229 citations

01 Jan 1972
Abstract: This chapter contains sections titled: The probability density, Fourier transforms and characteristic functions, Joint statistics and statistical independence, Correlation functions and spectra, The central limit theorem

3,258 citations

Journal ArticleDOI
Abstract: This paper studies the random walk, in a general time series setting that allows for weakly dependent and heterogeneously distributed innovations. It is shown that simple least squares regression consistently estimates a unit root under very general conditions in spite of the presence of autocorrelated errors. The limiting distribution of the standardized estimator and the associated regression t statistic are found using functional central limit theory. New tests of the random walk hypothesis are developed which permit a wide class of dependent and heterogeneous innovation sequences. A new limiting distribution theory is constructed based on the concept of continuous data recording. This theory, together with an asymptotic expansion that is developed in the paper for the unit root case, explain many of the interesting experimental results recently reported in Evans and Savin (1981, 1984).

2,881 citations

01 Jan 1984
Abstract: I Functional on Stochastic Processes.- 1. Stochastic Processes as Random Functions.- Notes.- Problems.- II Uniform Convergence of Empirical Measures.- 1. Uniformity and Consistency.- 2. Direct Approximation.- 3. The Combinatorial Method.- 4. Classes of Sets with Polynomial Discrimination.- 5. Classes of Functions.- 6. Rates of Convergence.- Notes.- Problems.- III Convergence in Distribution in Euclidean Spaces.- 1. The Definition.- 2. The Continuous Mapping Theorem.- 3. Expectations of Smooth Functions.- 4. The Central Limit Theorem.- 5. Characteristic Functions.- 6. Quantile Transformations and Almost Sure Representations.- Notes.- Problems.- IV Convergence in Distribution in Metric Spaces.- 1. Measurability.- 2. The Continuous Mapping Theorem.- 3. Representation by Almost Surely Convergent Sequences.- 4. Coupling.- 5. Weakly Convergent Subsequences.- Notes.- Problems.- V The Uniform Metric on Spaces of Cadlag Functions.- 1. Approximation of Stochastic Processes.- 2. Empirical Processes.- 3. Existence of Brownian Bridge and Brownian Motion.- 4. Processes with Independent Increments.- 5. Infinite Time Scales.- 6. Functional of Brownian Motion and Brownian Bridge.- Notes.- Problems.- VI The Skorohod Metric on D(0, ?).- 1. Properties of the Metric.- 2. Convergence in Distribution.- Notes.- Problems.- VII Central Limit Theorems.- 1. Stochastic Equicontinuity.- 2. Chaining.- 3. Gaussian Processes.- 4. Random Covering Numbers.- 5. Empirical Central Limit Theorems.- 6. Restricted Chaining.- Notes.- Problems.- VIII Martingales.- 1. A Central Limit Theorem for Martingale-Difference Arrays.- 2. Continuous Time Martingales.- 3. Estimation from Censored Data.- Notes.- Problems.- Appendix A Stochastic-Order Symbols.- Appendix B Exponential Inequalities.- Notes.- Problems.- Appendix C Measurability.- Notes.- Problems.- References.- Author Index.

2,639 citations

Network Information
Related Topics (5)
Markov chain

51.9K papers, 1.3M citations

90% related
Markov process

29.7K papers, 738.2K citations

87% related
Stochastic process

31.2K papers, 898.7K citations

87% related
Rate of convergence

31.2K papers, 795.3K citations

85% related
Bounded function

77.2K papers, 1.3M citations

84% related
No. of papers in the topic in previous years