scispace - formally typeset
Search or ask a question
Topic

Cepstrum

About: Cepstrum is a research topic. Over the lifetime, 3346 publications have been published within this topic receiving 55742 citations.


Papers
More filters
Proceedings ArticleDOI
01 Feb 2019
TL;DR: An ensemble learning method named Gradient Boosting (GB) is proposed to previse future fault classes based on the data obtained from analyzing the recorded fault data and can detect and prefigure different types of bearing faults with a staggering 99.58% accuracy.
Abstract: Monitoring the condition of rolling element bearing and diagnosing their faults are cumbrous jobs. Fortunately, we have machines to do the burdensome task for us. The contemporary development in the field of machine learning allows us not only to extract features from fault signals accurately but to analyze them and predict future bearing faults almost accurately as well in a systematic manner. Utilizing an ensemble learning method named Gradient Boosting (GB) our paper proposes a technique to previse future fault classes based on the data obtained from analyzing the recorded fault data. To demonstrate the cogency of the method, we applied it on the REB fault data provided by the Case Western Reserve University (CWRU) Lab. Employing this supervised learning algorithm after preprocessing the fault signals using real cepstrum analysis, we can detect and prefigure different types of bearing faults with a staggering 99.58% accuracy.

13 citations

Journal ArticleDOI
TL;DR: The VAS and CPP cut-off points of OS of voice disorder demonstrated a high power to discriminate between different severities of voice Disorder and were suggested cut-offs points for clinical use.
Abstract: Purpose: The aims of this study were to: (1) determine the visual analogue scale (VAS) and cepstrum peak prominence (CPP) cut-off points on the ratings of numerical scale (NS) related to the severi...

13 citations

Journal ArticleDOI
TL;DR: In this paper, the performance of various MFCC variants derived by considering two factors: the input and the filterbank in the cepstrum computation were compared, and the results showed that by combining mel- and linear-frequency cepstral coefficients derived from the glottal source and vocal tract, better overall detection accuracy was obtained compared to the defacto MFCC features derived from a voice signal.
Abstract: Automatic voice pathology detection enables objective assessment of pathologies that affect the voice production mechanism. Detection systems have been developed using the traditional pipeline approach (consisting of the feature extraction part and the detection part) and using the modern deep learning -based end-to-end approach. Due to the lack of vast amounts of training data in the study area of pathological voice, the former approach is still a valid choice. In the existing detection systems based on the traditional pipeline approach, the mel-frequency cepstral coefficient (MFCC) features can be regarded as the defacto standard feature set. In this study, automatic voice pathology detection is investigated by comparing the performance of various MFCC variants derived by considering two factors: the input and the filterbank in the cepstrum computation. For the first factor, three inputs (the voice signal, the glottal source and the vocal tract) are compared. The glottal source and the vocal tract are estimated using the quasi-closed phase glottal inverse filtering method. For the second factor, the mel-frequency and linear-frequency filterbanks are compared. Experiments were conducted separately using six databases consisting of voices produced by speakers suffering from one of four disorders (dysphonia, Parkinson’s disease, laryngitis, or heart failure) and by healthy speakers. Support vector machine (SVM) was used as the classifier. The results show that by combining mel- and linear-frequency cepstral coefficients derived from the glottal source and vocal tract, better overall detection accuracy was obtained compared to the defacto MFCC features derived from the voice signal. Furthermore, this combination provided comparable or better performance than four existing cepstral feature extraction techniques in clean and high signal-to-noise ratio (SNR) conditions.

13 citations

Proceedings ArticleDOI
21 Apr 1997
TL;DR: A maximum likelihood approach for joint estimation of both mel cepstral and linear spectral biases from the observed mismatched speech given only one set of clean speech models is presented, and significant improvement in the word recognition rate is achieved.
Abstract: In the context of continuous density hidden Markov model (CDHMM) we present a unified maximum likelihood (ML) approach to acoustic mismatch compensation. This is achieved by introducing additive Gaussian biases at the state level in both the mel cepstral and linear spectral domains. Flexible modelling of different mismatch effects can be obtained through appropriate bias tying. A maximum likelihood approach for joint estimation of both mel cepstral and linear spectral biases from the observed mismatched speech given only one set of clean speech models is presented, where the obtained bias estimates are used for the compensation of clean speech models during decoding. The proposed approach is applied to the recognition of noisy Lombard speech, and significant improvement in the word recognition rate is achieved.

13 citations

Journal ArticleDOI
TL;DR: Experimental results show that acoustic speech features can be predicted from MFCC vectors with good accuracy, and an alternative scheme that substitutes the higher-order MFCCs with acoustic features for transmission delivers accurate acoustic features but at the expense of a significant reduction in speech recognition accuracy.
Abstract: The aim of this work is to develop methods that enable acoustic speech features to be predicted from mel-frequency cepstral coefficient (MFCC) vectors as may be encountered in distributed speech recognition architectures. The work begins with a detailed analysis of the multiple correlation between acoustic speech features and MFCC vectors. This confirms the existence of correlation, which is found to be higher when measured within specific phonemes rather than globally across all speech sounds. The correlation analysis leads to the development of a statistical method of predicting acoustic speech features from MFCC vectors that utilizes a network of hidden Markov models (HMMs) to localize prediction to specific phonemes. Within each HMM, the joint density of acoustic features and MFCC vectors is modeled and used to make a maximum a posteriori prediction. Experimental results are presented across a range of conditions, such as with speaker-dependent, gender-dependent, and gender-independent constraints, and these show that acoustic speech features can be predicted from MFCC vectors with good accuracy. A comparison is also made against an alternative scheme that substitutes the higher-order MFCCs with acoustic features for transmission. This delivers accurate acoustic features but at the expense of a significant reduction in speech recognition accuracy.

13 citations


Network Information
Related Topics (5)
Feature extraction
111.8K papers, 2.1M citations
82% related
Robustness (computer science)
94.7K papers, 1.6M citations
80% related
Feature (computer vision)
128.2K papers, 1.7M citations
79% related
Deep learning
79.8K papers, 2.1M citations
79% related
Support vector machine
73.6K papers, 1.7M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202386
2022206
202160
202096
2019135
2018130