scispace - formally typeset
Search or ask a question
Topic

Cereus

About: Cereus is a research topic. Over the lifetime, 2405 publications have been published within this topic receiving 77833 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A review of Bacillus cereus gastroenteritis, toxins, sources, survival, growth characteristics, enumeration, and prevention can be found in this article, where two distinct forms of Gastroenteritis and mastitis are reported.

2,993 citations

Journal ArticleDOI
TL;DR: It is shown by multilocus enzyme electrophoresis and by sequence analysis of nine chromosomal genes that B. anthracis should be considered a lineage of B. cereus and this determination is not only a formal matter of taxonomy but may also have consequences with respect to virulence and the potential of horizontal gene transfer within the B. Cereus group.
Abstract: Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis are members of the Bacillus cereus group of bacteria, demonstrating widely different phenotypes and pathological effects. B. anthracis causes the acute fatal disease anthrax and is a potential biological weapon due to its high toxicity. B. thuringiensis produces intracellular protein crystals toxic to a wide number of insect larvae and is the most commonly used biological pesticide worldwide. B. cereus is a probably ubiquitous soil bacterium and an opportunistic pathogen that is a common cause of food poisoning. In contrast to the differences in phenotypes, we show by multilocus enzyme electrophoresis and by sequence analysis of nine chromosomal genes that B. anthracis should be considered a lineage of B. cereus. This determination is not only a formal matter of taxonomy but may also have consequences with respect to virulence and the potential of horizontal gene transfer within the B. cereus group.

1,083 citations

Journal ArticleDOI
TL;DR: The toxins associated with foodborne diseases frequently caused by B. cereus are reviewed, and recent findings regarding the associated toxins are discussed, as well as the present knowledge on virulence regulation.
Abstract: Bacillus cereus is widespread in nature and frequently isolated from soil and growing plants, but it is also well adapted for growth in the intestinal tract of insects and mammals. From these habitats it is easily spread to foods, where it may cause an emetic or a diarrhoeal type of food-associated illness that is becoming increasingly important in the industrialized world. The emetic disease is a food intoxication caused by cereulide, a small ring-formed dodecadepsipeptide. Similar to the virulence determinants that distinguish Bacillus thuringiensis and Bacillus anthracis from B. cereus, the genetic determinants of cereulide are plasmid-borne. The diarrhoeal syndrome of B. cereus is an infection caused by vegetative cells, ingested as viable cells or spores, thought to produce protein enterotoxins in the small intestine. Three pore-forming cytotoxins have been associated with diarrhoeal disease: haemolysin BL (Hbl), nonhaemolytic enterotoxin (Nhe) and cytotoxin K. Hbl and Nhe are homologous three-component toxins, which appear to be related to the monooligomeric toxin cytolysin A found in Escherichia coli. This review will focus on the toxins associated with foodborne diseases frequently caused by B. cereus. The disease characteristics are described, and recent findings regarding the associated toxins are discussed, as well as the present knowledge on virulence regulation.

1,074 citations

Journal ArticleDOI
TL;DR: Outside its notoriety in association with food poisoning and severe eye infections, this bacterium has been incriminated in a multitude of other clinical conditions such as anthrax-like progressive pneumonia, fulminant sepsis, and devastating central nervous system infections, particularly in immunosuppressed individuals, intravenous drug abusers, and neonates.
Abstract: Summary: Bacillus cereus is a Gram-positive aerobic or facultatively anaerobic, motile, spore-forming, rod-shaped bacterium that is widely distributed environmentally. While B. cereus is associated mainly with food poisoning, it is being increasingly reported to be a cause of serious and potentially fatal non-gastrointestinal-tract infections. The pathogenicity of B. cereus, whether intestinal or nonintestinal, is intimately associated with the production of tissue-destructive exoenzymes. Among these secreted toxins are four hemolysins, three distinct phospholipases, an emesis-inducing toxin, and proteases. The major hurdle in evaluating B. cereus when isolated from a clinical specimen is overcoming its stigma as an insignificant contaminant. Outside its notoriety in association with food poisoning and severe eye infections, this bacterium has been incriminated in a multitude of other clinical conditions such as anthrax-like progressive pneumonia, fulminant sepsis, and devastating central nervous system infections, particularly in immunosuppressed individuals, intravenous drug abusers, and neonates. Its role in nosocomial acquired bacteremia and wound infections in postsurgical patients has also been well defined, especially when intravascular devices such as catheters are inserted. Primary cutaneous infections mimicking clostridial gas gangrene induced subsequent to trauma have also been well documented. B. cereus produces a potent β-lactamase conferring marked resistance to β-lactam antibiotics. Antimicrobials noted to be effective in the empirical management of a B. cereus infection while awaiting antimicrobial susceptibility results for the isolate include ciprofloxacin and vancomycin.

883 citations

Journal ArticleDOI
01 May 2003-Nature
TL;DR: The sequencing and analysis of the type strain B. cereus ATCC 14579 together with the gapped genome of B. anthracis A2012 enables the comparative analysis to clarify the phylogeny of the cereus group, and the latter to determine plasmid-independent species-specific markers.
Abstract: Bacillus cereus is an opportunistic pathogen causing food poisoning manifested by diarrhoeal or emetic syndromes1. It is closely related to the animal and human pathogen Bacillus anthracis and the insect pathogen Bacillus thuringiensis, the former being used as a biological weapon and the latter as a pesticide. B. anthracis and B. thuringiensis are readily distinguished from B. cereus by the presence of plasmid-borne specific toxins (B. anthracis and B. thuringiensis) and capsule (B. anthracis). But phylogenetic studies based on the analysis of chromosomal genes bring controversial results, and it is unclear whether B. cereus, B. anthracis and B. thuringiensis are varieties of the same species2 or different species3,4. Here we report the sequencing and analysis of the type strain B. cereus ATCC 14579. The complete genome sequence of B. cereus ATCC 14579 together with the gapped genome of B. anthracis A20125 enables us to perform comparative analysis, and hence to identify the genes that are conserved between B. cereus and B. anthracis, and the genes that are unique for each species. We use the former to clarify the phylogeny of the cereus group, and the latter to determine plasmid-independent species-specific markers.

841 citations


Network Information
Related Topics (5)
Bacteria
23.6K papers, 715.9K citations
90% related
Lactobacillus
13.3K papers, 399.4K citations
89% related
Salmonella
22.1K papers, 530.6K citations
87% related
Escherichia coli
59K papers, 2M citations
87% related
Bacillus subtilis
19.6K papers, 539.4K citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023154
2022349
2021128
2020128
201984
201887