scispace - formally typeset
Search or ask a question
Topic

Cermet

About: Cermet is a research topic. Over the lifetime, 6284 publications have been published within this topic receiving 78669 citations.


Papers
More filters
Journal ArticleDOI
Nguyen Q. Minh1
TL;DR: Ceramic fuel cells, commonly referred to as solid-oxide fuel cells (SOFCs), are presently under development for a variety of power generation applications as mentioned in this paper, and the critical issues posed by the development of this type of fuel cell are discussed.
Abstract: A ceramic fuel cell in an all solid-state energy conversion device that produces electricity by electrochemically combining fuel and oxidant gases across an ionic conducting oxide. Current ceramic fuel cells use an oxygen-ion conductor or a proton conductor as the electrolyte and operate at high temperatures (>600°C). Ceramic fuel cells, commonly referred to as solid-oxide fuel cells (SOFCs), are presently under development for a variety of power generation applications. This paper reviews the science and technology of ceramic fuel cells and discusses the critical issues posed by the development of this type of fuel cell. The emphasis is given to the discussion of component materials (especially, ZrO2 electrolyte, nickel/ZrO2 cermet anode, LaMnO3 cathode, and LaCrO3 interconnect), gas reactions at the electrodes, stack designs, and processing techniques used in the fabrication of required ceramic structures.

3,654 citations

Journal ArticleDOI
TL;DR: In this article, an overview of the metallurgical reactions during the vacuum sintering process of powder mixtures for the manufacture of cermets is presented, together with differential thermal analysis.
Abstract: An overview of the metallurgical reactions during the vacuum sintering process of powder mixtures for the manufacture of cermets is presented. The relatively complex phase reactions in the multi-component system Ti/Mo/W/Ta/Nb/C,N-Co/Ni are discussed. The liquid binder phase reacts with titanium carbonitride by preferentially dissolving titanium carbide leaving titanium nitride undissolved. The compositions and the amounts of the gas species set free during the sintering process were monitored and led —together with differential thermal analysis — to a better understanding of the mechanisms that govern the sintering behaviour. The properties and the microstructure of cermets depend on the nature and the alloy status of the prematerials. The composition of the prematerials with respect to the carbon-nitrogen ratio, the stoichiometry of the hard phase and the amount and composition of the binder phase have a decisive influence on the properties and the cutting performances of the final products. Optimization of the properties with respect to the desired performance is possible. Examples of the cermet cutting performance in various applications are discussed.

520 citations

Book
01 Jan 1970
TL;DR: In this paper, the authors present a detailed discussion of the main factors affecting the transition of the Alumina phase and their effect on the performance of the process. But they do not consider the effect of other factors, such as temperature, dehydration, and deformation of the phase.
Abstract: INTRODUCTION. NOMENCLATURE. PREPARATION OF ALUMINA PHASES. Bauxite. Preparation of Bayer Alumina. Wet Alkaline Processes. Wet Acid Processes. Furnace Processes. Carbothermic Processes. Electrolytic Processes. Amorphous and Gel Aluminas. Preparation of the Alumina Trihydroxides. Gibbsite. Bayerite. Nordstrandite, Bayerite II, Randomite. Preparation of the Alumina Monohydroxides. Boehmite. Disapore. Transition Aluminas. Dehydration Mechanism. Sequence of Transition. Phases Formed on Aluminum. Rehydration. Alpha Alumina. Preparation. Factors Affecting Alumina Transitions. Special Ceramic Aluminas. Beta and Zeta Aluminas. Suboxides and Gaseous Phases. STRUCTURE AND MINERALOGICAL PROPERTIES. Structure of the Alumina Phases. Pseudomorphosis. Surface Area of Alumina. Porosity. Sorptive Capacity. MECHANICAL PROPERTIES OF ALUMINA. General Considerations. Bending, Compressive, Tensile, and Torsional Strength. Impact Strength. Moduli of Elasticity (E), and Rigidity (G). Poisson's Ration (i). Creep Characteristics. Thermal Shock. Internal Friction. Fatigue. Hardness and Abrasiveness of Alumina THERMAL PROPERTIES. Thermophysical and Thermochemical Constants. Specific Heat. Thermal Expansion. Thermal Conductivity. Thermal Diffusivity SONIC EFFECTS IN ALUMINA. Velocity of Sound in Alumina. Ultrasonic Absorption. ELECTRICAL PROPERTIES OF ALUMINA. Introduction. Electrical Conductivity of Alumina. Dielectric Constant and Loss Factor of Alumina. Dielectric Strength MAGNETIC PROPERTIES OF ALUMINA. Magnet Susceptibility. Magnetic Resonance of Alumina. OPTICAL PROPERTIES OF ALUMINA. Refractive Index of Alumina. Transmission, Emissivity, and Absorption of Alumina. Phosphorescence, Fluorescence, and Thermoluminescence. Optical Spectra of Alumina. Color in Alumina. Chromia-Alumina System, Laser Applications RADIATION AND ALUMINA. CHEMICAL PROPERTIES OF ALUMINA. Wet Chemical Reactions of Sintered Alumina. Reaction of the Chemical Elements with Alumina. Slagging Effects. Ash Slags. Slags Containing Sulfates. Steel Furnace Slags. Glass Furnace Reactions. Calcium Aluminate Slags. Aluminum Slag Reactions. Miscellaneous Reactions COLLOIDAL PROPERTIES OF ALUMINA. Plasticity. Surface Charge and Zeta Potential of Alumina. Flocculation and Deflocculation Effects. Additives GRINDING CERAMIC ALUMINA. FORMING ALUMINA CERAMICS. Cold Forming of Alumina. Hot-Pressing. Miscellaneous Forming Methods SINTERING. Introduction. Sintering Atmospheres. Sintering Additives ALUMINA IN REFRACTORIES. General. High-Alumina Refractories. Fused Cast Alumina Refractories. Clay-Bonded Alumina Refractories, Mullite Refractories. Spinel, Cordierite, Alumina-Chromite. Refractory Equipment. Refractories for Aluminum and Other Nonferrous Uses. Lightweight Alumina Refractories. Binders for Alumina Refractories ALUMINA AS AN ABRASIVE MATERIAL. Introduction. Loose Grain Abrasive. Grinding Wheels. Ceramic Tools ELECTRICAL APPLICATIONS. Spark Plug Insulators. Electron Tube Elements, High-Frequency Insulation. Alumina Porcelain Insulation. Resistors and Semiconductors CEMENT. Calcium Aluminate Cement. Barium Aluminates ALUMINA IN GLASS. Introduction. Bottle Glass. Devitrified Glasses Containing Alumina. Boron Glasses. Lithium Glasses, Phosphate Glasses. Optical Glasses ALUMINA IN COATINGS. Introduction. Anodic Coatings on Aluminum. Glazes and Enamels. Flame-Sprayed Coatings. Painted, Cast, or Troweled Coatings. Electrolytic Coatings. Evaporated Coatings. Dip Coatings, Cementation Coatings. Coatings on Alumina and Other Ceramic Bases. Alumina Coatings for Electrical Insulation. Alumina Coatings by Sputtering ALUMINA IN CERMETS AND POWDER METALLURGY. Introduction. Chromium-Alumina Cermets. (Iron, Nickel, Cobalt)-Alumina Cermets. Aluminum-Alumina Alloys. Miscellaneous Cermets ALUMINA IN AIRBORNE CERAMICS. Introduction. Gas-Turbine Accessories. Radomes and Rocket Equipment. SEALS, METALLIZING, WELDING. FIBERS, WHISKERS, FILAMENTS. Introduction. Alumina Fibers. Glass Fibers MISCELLANEOUS CERAMIC APPLICATIONS OF ALUMINA. References.

489 citations

Journal ArticleDOI
TL;DR: In this paper, a series of exposure tests was carried out with anode substrates used in SOFC development at the Research Centre Julich, where the changes in electrical conductivity as well as in the microstructure of the material were investigated.

457 citations

Journal ArticleDOI
14 Aug 2009-Science
TL;DR: It was shown that the electrochemical performance of the cell was extensively improved when the size of constituent particles was reduced so as to yield a highly porous microstructure, which led to better cell performance for the cell with higher anode porosity.
Abstract: We report a correlation between the microstructure of the anode electrode of a solid oxide fuel cell (SOFC) and its electrochemical performance for a tubular design. It was shown that the electrochemical performance of the cell was extensively improved when the size of constituent particles was reduced so as to yield a highly porous microstructure. The SOFC had a power density of greater than 1 watt per square centimeter at an operating temperature as low as 600°C with a conventional zirconia-based electrolyte, a nickel cermet anode, and a lanthanum ferrite perovskite cathode material. The effect of the hydrogen fuel flow rate (linear velocity) was also examined for the optimization of operating conditions. Higher linear fuel velocity led to better cell performance for the cell with higher anode porosity. A zirconia-based cell could be used for a low-temperature SOFC system under 600°C just by optimizing the microstructure of the anode electrode and operating conditions.

417 citations


Network Information
Related Topics (5)
Microstructure
148.6K papers, 2.2M citations
86% related
Coating
379.8K papers, 3.1M citations
82% related
Oxide
213.4K papers, 3.6M citations
81% related
Thin film
275.5K papers, 4.5M citations
80% related
Corrosion
152.8K papers, 1.9M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023156
2022290
2021174
2020187
2019194
2018193