scispace - formally typeset
Search or ask a question
Topic

Channel allocation schemes

About: Channel allocation schemes is a research topic. Over the lifetime, 10656 publications have been published within this topic receiving 182117 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The need for an alternative strategy, where low power nodes are overlaid within a macro network, creating what is referred to as a heterogeneous network is discussed, and a high-level overview of the 3GPP LTE air interface, network nodes, and spectrum allocation options is provided, along with the enabling mechanisms.
Abstract: As the spectral efficiency of a point-to-point link in cellular networks approaches its theoretical limits, with the forecasted explosion of data traffic, there is a need for an increase in the node density to further improve network capacity. However, in already dense deployments in today's networks, cell splitting gains can be severely limited by high inter-cell interference. Moreover, high capital expenditure cost associated with high power macro nodes further limits viability of such an approach. This article discusses the need for an alternative strategy, where low power nodes are overlaid within a macro network, creating what is referred to as a heterogeneous network. We survey current state of the art in heterogeneous deployments and focus on 3GPP LTE air interface to describe future trends. A high-level overview of the 3GPP LTE air interface, network nodes, and spectrum allocation options is provided, along with the enabling mechanisms for heterogeneous deployments. Interference management techniques that are critical for LTE heterogeneous deployments are discussed in greater detail. Cell range expansion, enabled through cell biasing and adaptive resource partitioning, is seen as an effective method to balance the load among the nodes in the network and improve overall trunking efficiency. An interference cancellation receiver plays a crucial role in ensuring acquisition of weak cells and reliability of control and data reception in the presence of legacy signals.

1,734 citations

Proceedings ArticleDOI
13 Mar 2005
TL;DR: It is shown that intelligent channel assignment is critical to Hyacinth's performance, and distributed algorithms that utilize only local traffic load information to dynamically assign channels and to route packets are presented, and their performance is compared against a centralized algorithm that performs the same functions.
Abstract: Even though multiple non-overlapped channels exist in the 2.4 GHz and 5 GHz spectrum, most IEEE 802.11-based multi-hop ad hoc networks today use only a single channel. As a result, these networks rarely can fully exploit the aggregate bandwidth available in the radio spectrum provisioned by the standards. This prevents them from being used as an ISP's wireless last-mile access network or as a wireless enterprise backbone network. In this paper, we propose a multi-channel wireless mesh network (WMN) architecture (called Hyacinth) that equips each mesh network node with multiple 802.11 network interface cards (NICs). The central design issues of this multi-channel WMN architecture are channel assignment and routing. We show that intelligent channel assignment is critical to Hyacinth's performance, present distributed algorithms that utilize only local traffic load information to dynamically assign channels and to route packets, and compare their performance against a centralized algorithm that performs the same functions. Through an extensive simulation study, we show that even with just 2 NICs on each node, it is possible to improve the network throughput by a factor of 6 to 7 when compared with the conventional single-channel ad hoc network architecture. We also describe and evaluate a 9-node Hyacinth prototype that Is built using commodity PCs each equipped with two 802.11a NICs.

1,636 citations

Proceedings ArticleDOI
19 Sep 2011
TL;DR: Experimental results show that a re- design of the wireless network stack to exploit full duplex capability can result in significant improvements in network performance.
Abstract: This paper presents a full duplex radio design using signal inversion and adaptive cancellation. Signal inversion uses a simple design based on a balanced/unbalanced (Balun) transformer. This new design, unlike prior work, supports wideband and high power systems. In theory, this new design has no limitation on bandwidth or power. In practice, we find that the signal inversion technique alone can cancel at least 45dB across a 40MHz bandwidth. Further, combining signal inversion cancellation with cancellation in the digital domain can reduce self-interference by up to 73dB for a 10MHz OFDM signal. This paper also presents a full duplex medium access control (MAC) design and evaluates it using a testbed of 5 prototype full duplex nodes. Full duplex reduces packet losses due to hidden terminals by up to 88%. Full duplex also mitigates unfair channel allocation in AP-based networks, increasing fairness from 0.85 to 0.98 while improving downlink throughput by 110% and uplink throughput by 15%. These experimental results show that a re- design of the wireless network stack to exploit full duplex capability can result in significant improvements in network performance.

1,489 citations

Journal ArticleDOI
TL;DR: The authors propose a computationally simple approximate expression to provide a unified metric to represent the effective bandwidth used by connections and the corresponding effective load of network links, which can then be used for efficient bandwidth management, routing, and call control procedures aimed at optimizing network usage.
Abstract: The authors propose a computationally simple approximate expression for the equivalent capacity or bandwidth requirement of both individual and multiplexed connections, based on their statistical characteristics and the desired grade-of-service (GOS). The purpose of such an expression is to provide a unified metric to represent the effective bandwidth used by connections and the corresponding effective load of network links. These link metrics can then be used for efficient bandwidth management, routing, and call control procedures aimed at optimizing network usage. While the methodology proposed can provide an exact approach to the computation of the equivalent capacity, the associated complexity makes it infeasible for real-time network traffic control applications. Hence, an approximation is required. The validity of the approximation developed is verified by comparison to both exact computations and simulation results. >

1,442 citations

Journal ArticleDOI
TL;DR: Among the possible subcarrier mapping approaches, it is found that localizedFDMA (LFDMA) with channel-dependent scheduling (CDS) results in higher throughput than interleaved FDMA (JFDMA), however, the PARR performance of IFDMA is better than that of LFDMA.
Abstract: Single carrier frequency division multiple access (SC FDMA), a modified form of orthogonal FDMA (OFDMA), is a promising technique for high data rate uplink communications in future cellular systems. SC-FDMA has similar throughput performance and essentially the same overall complexity as OFDMA. A principal advantage of SC-FDMA is the peak-to-average power ratio (PARR), which is lower than that of OFDMA. SC FDMA is currently a strong candidate for the uplink multiple access scheme in the long term evolution of cellular systems under consideration by the third generation partnership project (3GPP). In this paper, we give an overview of SC-FDMA. We also analyze the effects of subcarrier mapping on throughput and PARR. Among the possible subcarrier mapping approaches, we find that localized FDMA (LFDMA) with channel-dependent scheduling (CDS) results in higher throughput than interleaved FDMA (JFDMA). However, the PARR performance of IFDMA is better than that of LFDMA. As in other communications systems there are complex tradeoffs between design parameters and performance in an SC-FDMA system

1,328 citations


Network Information
Related Topics (5)
Wireless network
122.5K papers, 2.1M citations
95% related
Wireless ad hoc network
49K papers, 1.1M citations
94% related
Network packet
159.7K papers, 2.2M citations
94% related
Wireless
133.4K papers, 1.9M citations
92% related
Fading
55.4K papers, 1M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202315
202259
2021181
2020268
2019293
2018292