scispace - formally typeset
Search or ask a question
Topic

Channel allocation schemes

About: Channel allocation schemes is a research topic. Over the lifetime, 10656 publications have been published within this topic receiving 182117 citations.


Papers
More filters
Patent
23 Apr 2003
TL;DR: In this article, a system, method and computer program for dynamic frequency allocation for packet switched services in which radio channels used for packet-switched services may be dynamically allocated to meet quality of service (QoS) requirements utilizing a dynamic frequency and channel allocation system.
Abstract: A system, method and computer program for dynamic frequency allocation for packet switched services in which radio channels used for packet switched services may be dynamically allocated to meet quality of service (QoS) requirements utilizing a dynamic frequency and channel allocation system. The achievable throughput is estimated in the available channels. Further, the user or application is able to specify the level of service desired and the system, method and computer program will select a channel assignment to meet the desired level of service. When the channels to be assigned have been selected, the system, method and computer program will evaluate if the new channel assignment will cause excessive interference to any other ongoing connection. In such case the ongoing connection will be re-assigned to another suitable radio channel.

92 citations

Journal ArticleDOI
TL;DR: A network selection and channel allocation mechanism in order to increase revenue by accommodating more SUs and catering to their preferences, while at the same time, respecting the primary network operator's policies is presented.
Abstract: The demand for spectrum resources has increased dramatically with the advent of modern wireless applications. Spectrum sharing, considered as a critical mechanism for 5G networks, is envisioned to address spectrum scarcity issue and achieve high data rate access, and guaranteed the quality of service (QoS). From the licensed network’s perspective, the interference caused by all secondary users (SUs) should be minimized. From secondary networks point of view, there is a need to assign networks to SUs in such a way that overall interference is reduced, enabling the accommodation of a growing number of SUs. This paper presents a network selection and channel allocation mechanism in order to increase revenue by accommodating more SUs and catering to their preferences, while at the same time, respecting the primary network operator’s policies. An optimization problem is formulated in order to minimize accumulated interference incurred to licensed users and the amount that SUs have to pay for using the primary network. The aim is to provide SUs with a specific QoS at a lower price, subject to the interference constraints of each available network with idle channels. Particle swarm optimization and a modified version of the genetic algorithm are used to solve the optimization problem. Finally, this paper is supported by extensive simulation results that illustrate the effectiveness of the proposed methods in finding a near-optimal solution.

91 citations

Journal ArticleDOI
TL;DR: A hybrid access mechanism for multi-channel femtocells which employ orthogonal spectrum access schemes is focused on and the distributions of signal-to-interference-plus-noise ratios, and mean achievable rates, of both nonsubscribers and subscribers are derived.
Abstract: For two-tier networks consisting of macrocells and femtocells, the channel access mechanism can be configured to be open access, closed access, or hybrid access. Hybrid access arises as a compromise between open and closed access mechanisms, in which a fraction of available spectrum resource is shared to nonsubscribers while the remaining reserved for subscribers. This paper focuses on a hybrid access mechanism for multi-channel femtocells which employ orthogonal spectrum access schemes. Considering a randomized channel assignment strategy, we analyze the performance in the downlink. Using stochastic geometry as technical tools, we model the distribution of femtocells as Poisson point process or Neyman-Scott cluster process and derive the distributions of signal-to-interference-plus-noise ratios, and mean achievable rates, of both nonsubscribers and subscribers. The established expressions are amenable to numerical evaluation, and shed key insights into the performance tradeoff between subscribers and nonsubscribers. The analytical results are corroborated by numerical simulations.

91 citations

Journal ArticleDOI
TL;DR: It is shown that by optimizing the transceiver modulation format as part of the channel allocation and routing problem gains in network data throughput can be achieved for the 14-node NSF mesh network.
Abstract: This paper serves to highlight the gains in SNR margin and/or data capacity that can be achieved through a proper optimization of the transceiver parameters, for example, launch power, modulation format, and channel allocation. A simple quality of transmission estimator is described that allows a rapid estimation of the signal quality based on ASE noise and nonlinear interference utilizing the Gaussian noise model. The quality of transmission estimator was used to optimize the SNR and maximise the data throughput of transmission signals in a point-to-point link by adjusting the launch power and modulation format. In a three-node network, the launch power and channel allocation were adjusted to minimise the overall effect of nonlinear interference. This paper goes on to show that by optimizing the transceiver modulation format as part of the channel allocation and routing problem gains in network data throughput can be achieved for the 14-node NSF mesh network.

91 citations

Proceedings ArticleDOI
13 Apr 2008
TL;DR: This work introduces a payment formula to ensure the existence of a strongly dominant strategy equilibrium (SDSE), a much stronger solution concept and shows that, when the system converges to a SDSE, it also achieves global optimality in terms of effective system-wide throughput.
Abstract: Channel assignment is a very important topic in wireless networks. In this paper, we study FDMA channel assignment in a non-cooperative wireless network, where devices are selfish. Existing work on this problem has considered Nash equilibrium (NE), which is not a very strong solution concept and may not guarantee a good system-wide performance. In contrast, in this work we introduce a payment formula to ensure the existence of a strongly dominant strategy equilibrium (SDSE), a much stronger solution concept. We show that, when the system converges to a SDSE, it also achieves global optimality in terms of effective system-wide throughput. Furthermore, we extend our work to the case in which some radios have limited tunability. We show that, in this case, it is generally impossible to have a similar SDSE solution; but, with additional assumptions on the numbers of radios and the types of channels, etc., we can again achieve a SDSE solution that guarantees globally optimal effective system throughput in the entire system. Besides this extension, we also consider another extension of our strategic game, which is a repeated game that provides fairness. Finally, we evaluate our design in experiments. Our evaluations verify that the system does converge to the globally optimal channel assignment with our designed payment formula, and that the effective system- wide throughput is significantly higher than that of anarchy and Nash equilibrium (NE).

91 citations


Network Information
Related Topics (5)
Wireless network
122.5K papers, 2.1M citations
95% related
Wireless ad hoc network
49K papers, 1.1M citations
94% related
Network packet
159.7K papers, 2.2M citations
94% related
Wireless
133.4K papers, 1.9M citations
92% related
Fading
55.4K papers, 1M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202315
202259
2021181
2020268
2019293
2018292